Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(29): 15758-15765, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34286766

RESUMO

The essential role of boronic esters in controlling both the direction and selectivity of chemical reactions as well as their significant function in catalytic activity have been demonstrated for industrially important processes. The specific interaction analyses of the monosaccharide GlcNH2 with boric acid are of interest since monosaccharides serve as model systems for the more sophisticated carbohydrate molecules. The interaction of GlcNH2 with boric acid was systematically investigated by numerous NMR techniques. A 1 : 1 chelate boron complex coordinated at the cis-1,2 position of GlcNH2 was identified as the major species in DMSO-d6 solution via1H and 13C INEPT DOSY NMR spectroscopy. This specific boron nitrogen coordination mechanism was further supported by the 1H-15N HSQC spectra. Variations in the spin-lattice relaxation times (T1) of the 13C1 nucleus also provided quantitative data regarding this non-covalent interactions. This is an application of 1H, 13C INEPT DOSY, 1H-15N HSQC, and relaxation methods to study such aggregations in solutions. These methods have potential applications in the characterization of reactive intermediates in biomass conversions.

2.
Phys Chem Chem Phys ; 17(35): 23173-82, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26278065

RESUMO

The basic ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) could efficiently catalyze the conversion of 2-amino-2-deoxy-d-glucose (GlcNH2) into deoxyfructosazine (DOF) and fructosazine (FZ). Mechanistic investigation by NMR studies disclosed that [C2C1Im][OAc], exhibiting strong hydrogen bonding basicity, could coordinate with the hydroxyl and amino groups of GlcNH2via the promotion of hydrogen bonding in bifunctional activation of substrates and further catalyzing product formation, based on which a plausible reaction pathway involved in this homogeneous base-catalyzed reaction was proposed. Hydrogen bonding as an activation force, therefore, is responsible for the remarkable selectivity and rate enhancement observed.


Assuntos
Glucosamina/síntese química , Imidazóis/química , Catálise , Glucosamina/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
3.
Artif Organs ; 39(4): 352-60, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25345752

RESUMO

Extrahepatic bile duct (EBD) injury can happen during surgery. To repair a defect of the EBD and prevent postoperative biliary complications, a collagen membrane was designed. The collagen material was porous, biocompatible, and degradable and could maintain its shape in bile soaking for about 4 weeks. The goal was to induce rapid bile duct tissue regeneration. Twenty Chinese experimental hybrid pigs were used in this study and divided into a patch group and a control group. A spindle-shaped defect (20 mm × 6 mm) was made in the anterior wall of the lower EBD in the swine model, and then the defect was reconstructed using a collagen patch with a drainage tube and wrapped with greater omentum. Ultrasound was performed at 2, 4, 8, and 12 weeks postoperatively. Liver function tests and white blood cell count (WBC) were measured. Hematoxylin-eosin staining, cytokeratin 7 immunohistochemical staining, and Van Gieson's staining of EBD were used. The diameter and thickness of the EBD at the graft site were measured. There was no significant difference in liver function tests or WBC in the patch group compared with the control group. No evidence of leakage or stricture was observed, but some pigs developed biliary sludge or stone at 4 and 8 weeks. The drainage tube was lost within 12 weeks. The neo-EBD could withstand normal biliary pressure 2 weeks after surgery. Histological study showed the accessory glands and epithelial cells gradually regenerated at graft sites from 4 weeks, with increasing vessel infiltration and decreasing inflammation. The collagen fibers became regular with full coverage of epithelial cells. The statistical analysis of diameter and thickness showed no stricture formation at the graft site, but the EBD wall was slightly thicker than in the normal bile duct due to collagen fiber deposition. The structure of the neo-EBD was similar to that of the normal EBD. The collagen membrane patch associated with a drainage tube and wrapped with greater omentum effectively induced the regeneration of the EBD defect within 12 weeks.


Assuntos
Ductos Biliares Extra-Hepáticos/cirurgia , Procedimentos Cirúrgicos do Sistema Biliar/instrumentação , Materiais Biocompatíveis , Colágeno , Membranas Artificiais , Procedimentos de Cirurgia Plástica/instrumentação , Regeneração , Animais , Ductos Biliares Extra-Hepáticos/diagnóstico por imagem , Ductos Biliares Extra-Hepáticos/lesões , Ductos Biliares Extra-Hepáticos/patologia , Ductos Biliares Extra-Hepáticos/fisiopatologia , Modelos Animais de Doenças , Desenho de Equipamento , Estudos de Viabilidade , Feminino , Imuno-Histoquímica , Contagem de Leucócitos , Testes de Função Hepática , Masculino , Omento/cirurgia , Complicações Pós-Operatórias/etiologia , Suínos , Fatores de Tempo , Ultrassonografia
4.
Biomacromolecules ; 15(3): 1062-8, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24527809

RESUMO

Neural stem/progenitor cells (NS/PCs) play a therapeutic role in nervous system diseases and contribute to functional recovery. However, their efficacy is limited as the majority of cells die post-transplantation. In this study, collagen sponges were utilized as carriers for NS/PCs. Basic fibroblast growth factor (bFGF), a mitogen for NS/PCs, was incorporated into the collagen sponges to stimulate NS/PC proliferation. However, the effect of native bFGF is limited because it diffuses into the culture medium and is lost following medium exchange. To overcome this problem, a collagen-binding polypeptide domain, which has high affinity to collagen, was fused with bFGF to sustain the exposure of NS/PCs within the collagen sponges to bFGF. The results indicated that the number of NS/PCs was significantly higher in collagen sponges incorporating engineered bFGF than in those with native bFGF or the PBS control after 7 days in culture. Here, we designed a natural biological neural scaffold consisting of collagen sponges, engineered bFGF, and NS/PCs. In addition to the effect of proliferated NS/PCs, the engineered bFGF retained in the natural biological neural scaffolds could have a direct effect on nervous system reconstruction. The two aspects of the natural biological neural scaffolds may produce synergistic effects, and so they represent a promising candidate for nervous system repair.


Assuntos
Fatores de Crescimento de Fibroblastos/administração & dosagem , Sistema Nervoso/efeitos dos fármacos , Células-Tronco Neurais/citologia , Engenharia Tecidual , Animais , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Colágeno/química , Meios de Cultura , Fatores de Crescimento de Fibroblastos/química , Humanos , Microscopia Eletrônica de Varredura , Células-Tronco Neurais/metabolismo , Ratos , Alicerces Teciduais/química
5.
Int J Mol Sci ; 15(10): 18593-609, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25322152

RESUMO

The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.


Assuntos
Colágeno/química , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/fisiologia , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Feminino , Proteínas Imobilizadas/administração & dosagem , Proteínas Imobilizadas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/uso terapêutico
6.
Regen Ther ; 25: 162-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38178930

RESUMO

Introduction: Acute kidney injury (AKI) was a disease with a high mortality mainly caused by renal ischemia/reperfusion injury (I/R). Although the current non-targeted administration of vascular endothelial growth factor (VEGF) for AKI had been revealed to facilitate the recovery of renal I/R, how to targeted deliver VEGF and to retain it efficiently in the ischemic kidney was critical for its clinical application. Methods: In present study, bi-functional KIT-PR1P peptides were constructed which bond VEGF through PR1P domain, and targeted ischemic kidney through KIT domain to interact with biomarker of AKI-kidney injury molecule-1 (Kim-1). Then the targeted and therapeutic effects of KIT-PR1P/VEGF in AKI was explored in vitro and in vivo. Results: The results showed KIT-PR1P exhibited better angiogenic capacity and targeting ability to hypoxia HK-2 cells with up-regulated Kim-1 in vitro. When KIT-PR1P/VEGF was used for the treatment of renal I/R through intravenous administration in vivo, KIT-PR1P could guide VEGF and retain its effective concentration in ischemic kidney. In addition, KIT-PR1P/VEGF promoted angiogenesis, alleviated renal tubular injury and fibrosis, and finally promoted functional recovery of renal I/R. Conclusion: These results indicated that the bi-functional KIT-PR1P peptides combined with VEGF would be a promising strategy for the treatment of AKI by targeting to Kim-1.

7.
Bioact Mater ; 35: 242-258, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38333615

RESUMO

Induced pluripotent stem cells (iPSCs) can be personalized and differentiated into neural stem cells (NSCs), thereby effectively providing a source of transplanted cells for spinal cord injury (SCI). To further improve the repair efficiency of SCI, we designed a functional neural network tissue based on TrkC-modified iPSC-derived NSCs and a CBD-NT3-modified linear-ordered collagen scaffold (LOCS). We confirmed that transplantation of this tissue regenerated neurons and synapses, improved the microenvironment of the injured area, enhanced remodeling of the extracellular matrix, and promoted functional recovery of the hind limbs in a rat SCI model with complete transection. RNA sequencing and metabolomic analyses also confirmed the repair effect of this tissue from multiple perspectives and revealed its potential mechanism for treating SCI. Together, we constructed a functional neural network tissue using human iPSCs-derived NSCs as seed cells based on the interaction of receptors and ligands for the first time. This tissue can effectively improve the therapeutic effect of SCI, thus confirming the feasibility of human iPSCs-derived NSCs and LOCS for SCI repair and providing a valuable direction for SCI research.

8.
Cell Stem Cell ; 31(5): 772-787.e11, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565140

RESUMO

Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.


Assuntos
Proteínas de Transporte , Citocinas , Matriz Extracelular , Organoides , Traumatismos da Medula Espinal , Medula Espinal , Animais , Organoides/metabolismo , Organoides/citologia , Medula Espinal/metabolismo , Matriz Extracelular/metabolismo , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Coelhos , Diferenciação Celular , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Tenascina/metabolismo , Proliferação de Células , Animais Recém-Nascidos , Regeneração Nervosa/fisiologia
9.
Biomed Pharmacother ; 158: 114147, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584430

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) has high morbidity and mortality, with no effective treatment at present. Emphysema, a major component of COPD, is a leading cause of human death worldwide. Fibroblast growth factor 2 (FGF2) is implicated in the pathogenesis of pulmonary emphysema and may play an important role in the lung repair process after injury, but concerns remain with respect to its effectiveness. OBJECTIVE: In the present work, we sought to determine how the timing (early and late intervention) of sustained-release FGF2 system administration impacted its effectiveness on a porcine pancreatic elastase (PPE)-induced lung injury mouse model. METHODS: To examine the early intervention efficiency of collagen-binding FGF2 (CBD-FGF2), mice received intratracheally nebulized CBD-FGF2 with concurrent intratracheal injection of PPE. To explore the late intervention effect, CBD-FGF2 was intratracheally aerosolized after PPE administration, and lungs were collected after CBD-FGF2 treatment for subsequent analysis. RESULT: In response to PPE, mice had significantly increased alveolar diameter, collagen deposition and expression of inflammatory factors and decreased lung function indices and expression of alveolar epithelium markers. Our results indicate that CBD-FGF2 administration was able to prevent and repair elastase-induced lung injury partly through the suppression of the inflammatory response and recovery of the alveolar epithelium. The early use of CBD-FGF2 for the prevention of PPE-induced emphysema showed better results than late therapeutic administration against established emphysema. CONCLUSION: These data provide insight regarding the prospective role of a drug-based option (CBD-FGF2) for preventing and curing emphysema.


Assuntos
Enfisema , Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Camundongos , Suínos , Animais , Elastase Pancreática/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Pulmão/patologia , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema/patologia , Colágeno/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
10.
iScience ; 26(7): 106980, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37332676

RESUMO

Herein, we report choline chloride-based deep eutectic solvents (DESs) promoted conversion of N-acetyl-d-glucosamine (GlcNAc) into nitrogen-containing compounds, i.e., 3-acetamido-5-(1',2'-dihydroxyethyl) furan (Chromogen III) and 3-acetamido-5-acetylfuran (3A5AF). The binary deep eutectic solvent choline chloride-glycerin (ChCl-Gly), was found to promote the dehydration of GlcNAc to form Chromogen III, which reaches a maximum yield of 31.1%. On the other hand, the ternary deep eutectic solvent, choline chloride-glycerol-B(OH)3 (ChCl-Gly-B(OH)3), promoted the further dehydration of GlcNAc into 3A5AF with a maximum yield of 39.2%. In addition, the reaction intermediate, 2-acetamido-2,3-dideoxy-d-erythro-hex-2-enofuranose (Chromogen I), was detected by in situ nuclear magnetic resonance (NMR) techniques when promoted by ChCl-Gly-B(OH)3. The experimental results of the 1H NMR chemical shift titration showed ChCl-Gly interactions with α-OH-3 and α-OH-4 of GlcNAc, which is responsible for promoting the dehydration reaction. Meanwhile, the strong interaction between Cl- and GlcNAc was demonstrated by 35Cl NMR.

11.
Waste Manag ; 155: 260-268, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402102

RESUMO

Vinyl ester resins (VER) and its composites are widely used in chemical industry and municipal engineering. However, its dense three-dimensional network structure makes its degradation and recycling a great challenge. Herein, a novel, efficient and green degradation system gamma-valerolactone (GVL)-H2O/p-toluene sulfonic (PTSA) was developed to degrade VER and its composites. VER was completely degraded in the GVL-H2O/PTSA at 210 °C and 0.6 MPa. By combing SEM-EDS, IR, NMR, GPC and MALDI-TOF-MS analysis, it was clarified that VER swelled well in GVL, allowing the transfer of PTSA and H2O through the resin matrix. The ester bonds in VER were cleaved via hydrolysis with H2O catalyzed by the sulfonic acid of PTSA, and high value-added polymer products, i.e., copolymer of styrene and methacrylic acid (SMAA) and bisphenol-A diglycidyl ether (DGEBA), were recycled, which accounted for ca. 87.0 wt% of raw VER. DGEBA can be recycled to prepare a new PU material. The GVL-H2O/PTSA system was also effective for degrading UPR and VER-containing composites. This work provides a practical strategy for chemical degradation and recovery of thermoset VER resins.


Assuntos
Ésteres , Poliuretanos , Poliuretanos/química , Compostos Benzidrílicos , Cloreto de Polivinila , Polímeros
12.
J Control Release ; 353: 462-474, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493946

RESUMO

The cerebral ischemia was one of the most common causes of disability and death worldwide. Basic fibroblast growth factor (bFGF) was reported to have neuroprotective function as well as promoting angiogenesis in the ischemic brain, but the targeting delivery of bFGF to ischemic brain was still difficult. In present study, a specific peptide was used to modify bFGF to construct recombinant CFBP-bFGF, and CFBP-bFGF could specifically deliver to ischemic brain through binding with the upregulated protein-connective tissue growth factor (CTGF). When CFBP-bFGF was used in rats with cerebral ischemia by intravenous injection, local concentration of the bFGF in ischemic brain was significantly increased. In addition, enhanced neurons survival, increased angiogenesis, decreased neuroinflammation were observed, that improved the motor functional recovery of cerebral ischemic injury. These results demonstrated that the targeting delivery of CFBP-bFGF would be a potential therapeutic approach for cerebral ischemia.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ratos , Animais , Fator 2 de Crescimento de Fibroblastos/uso terapêutico , Ratos Sprague-Dawley , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Infarto Cerebral/etiologia , Infarto Cerebral/metabolismo , Encéfalo/metabolismo , Isquemia , Lesões Encefálicas/metabolismo
13.
Waste Manag ; 137: 275-282, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34814073

RESUMO

Poly-p-phenylene terephthamide (PPTA) is widely applied in bulletproof products and composite materials because of its high strength, high modulus, high temperature resistance and creep resistance. The PPTA molecule with highly symmetrical and regular structure is linear structure formed by the alternating connection of benzene ring and amide bond, and the amide bonds between the molecular chains form strong hydrogen bonds. Therefore, the dissolution and depolymerization of PPTA is very challenging. In this work, an efficient catalytic system was developed for the controllable degradation of waste PPTA, and the high-value added monomers terephthalic acid (TPA) and p-phenylenediamine (PPD) were recovered. The results show that the amide bonds of PPTA can be selectively cleaved by the strong Brönsted base catalysts in alcohols, especially in the NaOH/n-butanol system. Under the optimal degradation conditions (5 wt% NaOH in n-butanol, 180 °C, 6 h), the percentage degradation of PPTA is 100%, and the yields of TPA and PPD are 92.0% and 91.5%, respectively. In addition, it is found that the wettability of n-alcohols on PPTA monofilament and the addition of a small amount of water have important influences on the degradation of PPTA. The work elucidates the degradation mechanism of PPTA, and reveals the important factors affecting the depolymerization of PPTA.


Assuntos
Álcoois , Cicloparafinas , Amidas , Catálise
14.
J Biomater Appl ; 36(8): 1484-1502, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35060797

RESUMO

The primary functions of the bladder are storing urine under low and stable pressure and micturition. Various forms of trauma, tumors, and iatrogenic injuries can cause the loss of or reduce bladder function or capacity. If such damage is not treated in time, it will eventually lead to kidney damage and can even be life-threatening in severe cases. The emergence of tissue engineering technology has led to the development of more possibilities for bladder repair and reconstruction, in which the selection of scaffolds is crucial. In recent years, a growing number of tissue-engineered bladder scaffolds have been constructed. Therefore, this paper will discuss the development of tissue-engineered bladder scaffolds and will further analyze the limitations of and challenges encountered in bladder reconstruction.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Regeneração , Alicerces Teciduais , Bexiga Urinária/cirurgia
15.
Regen Biomater ; 9: rbac029, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615568

RESUMO

Renal ischemia-reperfusion (I/R) injury is one of the major causes of acute kidney injury. However, there is still no effective treatment for this disease. Basic fibroblast growth factor (bFGF) has been reported to be beneficial for recovery from ischemic diseases. It is vital to increase the local concentration and reduce the diffusion of bFGF in vivo for renal I/R injury therapy. A targeted growth factor delivery system that responds to specific biological signals in the regenerative environment to guide release has been highlighted in tissue repair. In the present study, a specific peptide was fused with bFGF and called bFGF-kidney injury targeting (KIT-bFGF), and this compound specifically targeted kidney injury molecule-1 both in hypoxic renal HK-2 cells in vitro and ischemic kidneys in vivo after intravenous injection. When administered to rat models of renal I/R injury, KIT-bFGF attenuated renal tubule damage and fibrosis, and promoted functional recovery compared to the effects of native bFGF and the control. We also investigated the mechanism by which KIT-bFGF activated the ERK1/2 and Akt signaling pathways to significantly reduce apoptosis and protect against ischemic injury in the kidney. These results demonstrated that targeted delivery of KIT-bFGF could be an effective strategy for the treatment of renal I/R injury.

16.
Biomed Res Int ; 2021: 5502740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692831

RESUMO

OBJECTIVES: Urethral tissue reconstruction for hypospadias is challenging for urologists. In this study, bovine acellular dermal matrix (ADM) patch loading with collagen-binding vascular endothelial growth factor (CBD-VEGF) was used to repair the urethral injury in beagles. METHODS: The safety and effectiveness of the scaffold implantation were carefully evaluated by comparing among the urethral injury control group, ADM implantation group, and ADM modified with CBD-VEGF implantation group during 6 months. Urodynamic examination, urethral angiography, and pathological examination were performed to evaluate the recovery of urethral tissue. RESULTS: Stricture, urethral diverticulum, and increased urethral closure pressure were observed in the control group. Fistula was observed in one animal in the ADM group. By contrast, no related complications or other adverse situations were observed in animals treated with ADM patch modified with CBD-VEGF. The average urethra diameter was significantly smaller in the control animals than in scaffold implantation groups. Pathological examination revealed more distribution of proliferative blood vessels in the animals treated with ADM modified with CBD-VEGF. CONCLUSIONS: Overall, ADM patches modified with CBD-VEGF demonstrated an optimized tissue repair performance in a way to increase tissue angiogenesis and maintain urethral function without inducing severe inflammation and scar formation.


Assuntos
Derme Acelular/metabolismo , Colágeno/metabolismo , Hipospadia/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Alicerces Teciduais , Uretra/transplante , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Bovinos , Modelos Animais de Doenças , Cães , Hipospadia/metabolismo , Hipospadia/patologia , Masculino , Uretra/química , Uretra/cirurgia , Fator A de Crescimento do Endotélio Vascular/genética , Cicatrização/efeitos dos fármacos
17.
J Agric Food Chem ; 69(8): 2403-2411, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595305

RESUMO

Using environment-friendly catalysts to convert biomass into compounds with high values is one of the central topics of green chemistry. In this work, [Ch][Pro] (cholinium as the cation and l-proline as the anion) ionic liquid was synthesized and applied as a model catalyst in the production of deoxyfructosazine (DOF) and fructosazine (FZ) from d-glucosamine (GlcNH2). The 13C NMR chemical shift titration experiments and the diffusion-ordered NMR spectroscopy (DOSY) measurements showed that, when the [Ch][Pro] interacted with GlcNH2, the l-proline anion ([Pro]-) played a major catalytic role instead of cholinium cation ([Ch]+). The effects of the reaction temperature and the amount of [Ch][Pro] on the product yields were surveyed. The experimental results showed that the highest DOF yield (33.78%) was obtained after 30 min at 100 °C when the molar ratio of [Ch][Pro]/GlcNH2 was 1. Moreover, in situ 1H NMR and in situ 13C NMR experiments were applied to monitor the reaction process with [Ch][Pro] as the catalyst. The reactive intermediate, dihydrofructosazine, was clearly detected by these in situ techniques. Accordingly, a possible reaction pathway was proposed. By applying other amino acids as the anions, we also prepared five other [Ch][AA] ionic liquids, and they showed different catalytic activities and selectivity in the GlcNH2 self-condensation reaction.


Assuntos
Líquidos Iônicos , Aminoácidos , Catálise , Glucosamina , Espectroscopia de Ressonância Magnética , Pirazinas
18.
ACS Appl Mater Interfaces ; 13(41): 48582-48594, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612043

RESUMO

As the frontier in heterogeneous catalyst, a monomer and positively charged active sites in the single-atom catalyst (SAC), anchored by high electronegative N, O, S, P, etc., atoms, may not be active for the multispecies (O2, substrates, intermediates, solvent etc.) involved liquid-phase aerobic oxidation. Here, with catalytic, aerobic oxidation of 5-hydroxymethylfurfural as an example, Pt SAC (Pt1-N4) was synthesized and tested first. With commercial Pt/C (Pt loading of 5 wt %) as a benchmark, 2,5-furandicarboxylic acid (FDCA) yield of 97.6% was obtained. Pt SAC (0.56 wt %) gave a much lower FDCA yield (28.8%). By changing the coordination atoms from highly electronegative N to low electronegative Co atoms, the prepared Pt single-atom alloy (SAA, Pt1-Co3) catalyst with ultralow Pt loading (0.06 wt %) gave a much high FDCA yield (99.6%). Density functional theory (DFT) calculations indicated that positively charged Pt sites (+0.712e) in Pt1-N4 almost lost the capability for oxygen adsorption and activation, as well as the adsorption for the key intermediate. In Pt1-Co3 SAA, the central negatively charged Pt atom (-0.446e) facilitated the adsorption of the key intermediate; meanwhile, the nearby Co atoms around the Pt atom constituted the O2-preferred adsorption/activation sites. This work shows the difference between the SAC with NPs and the SAA during liquid-phase oxidation of HMF and gives a useful guide in the future single-atom catalyst design in other related reactions.

19.
Biomater Sci ; 9(8): 2955-2971, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33634811

RESUMO

The limited regrowth of transected axons and insufficient regeneration of lost neurons in adult mammals collectively hinder complete spinal cord injury (SCI) repair. Hence, designing an ideal bio-scaffold which could coordinate the regeneration of axons and neurons in situ might be able to effectively facilitate the reconstruction of neural circuits and the recovery of nerve function after complete SCI. In this study, a sponge-like collagen scaffold with good drug release characteristics and good nerve cell compatibility was prepared and used as a drug delivery platform. When doubly modified with Taxol liposomes and collagen-binding neurotrophic factor 3, the scaffold dually alleviated myelin-derived inhibition on neurite outgrowth of neurons and neuronal differentiation of neural stem cells in vitro. Meanwhile, the binary-drug modified scaffold was also able to simultaneously promote both axonal and neuronal regeneration when implanted into a complete transected SCI model. Additionally, the regenerated axons and neurons throughout the lesion site formed extensive synaptic connections. Finally, complete SCI rats that received binary scaffold implantation exhibited optimal neuroelectrophysiological recovery and hindlimb locomotor improvement. Taken together, implantation of the binary scaffold can establish neural bridging networks for functional recovery, representing a clinically promising strategy for complete SCI repair.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Animais , Axônios , Regeneração Nervosa , Neurônios , Ratos , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Alicerces Teciduais
20.
J Urol ; 183(6): 2432-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20403614

RESUMO

PURPOSE: Studies show that basic fibroblast growth factor can promote bladder regeneration. However, the lack of targeting delivery approaches limits its clinical application. We investigated a collagen based targeting system for bladder regeneration. A collagen binding domain was added to the native basic fibroblast growth factor N-terminal to allow it to bind to collagen. MATERIALS AND METHODS: Sprague-Dawley rats underwent partial cystectomy. Collagen scaffolds loaded with collagen binding domain basic fibroblast growth factor, native basic fibroblast growth factor or phosphate buffered saline were grafted to the remaining host bladders, respectively. At days 30 and 90 reconstructed bladders were evaluated by histological analysis and urodynamics. RESULTS: This targeting basic fibroblast growth factor delivery system induced satisfying bladder histological structures. It promoted more vascularization and smooth muscle cell ingrowth. Urodynamics revealed well accommodated bladder tissue with volume capacity and compliance. CONCLUSIONS: Results show that the targeting delivery system consisting of collagen binding domain basic fibroblast growth factor and collagen membranes induced better bladder regeneration at the injury site. Thus, this targeting delivery system may be an effective strategy for bladder regeneration with potential clinical applications.


Assuntos
Colágeno , Fator 2 de Crescimento de Fibroblastos , Regeneração , Alicerces Teciduais , Bexiga Urinária/fisiologia , Animais , Humanos , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA