Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Biol ; 20(1): 34, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130883

RESUMO

BACKGROUND: In insects, airborne chemical signals are mainly detected by two receptor families, odorant receptors (ORs) and ionotropic receptors (IRs). Functions of ORs have been intensively investigated in Diptera and Lepidoptera, while the functions and evolution of the more ancient IR family remain largely unexplored beyond Diptera. RESULTS: Here, we identified a repertoire of 26 IRs from transcriptomes of female and male antennae, and ovipositors in the moth Agrotis segetum. We observed that a large clade formed by IR75p and IR75q expansions is closely related to the acid-sensing IRs identified in Diptera. We functionally assayed each of the five AsegIRs from this clade using Xenopus oocytes and found that two receptors responded to the tested ligands. AsegIR75p.1 responded to several compounds but hexanoic acid was revealed to be the primary ligand, and AsegIR75q.1 responded primarily to octanoic acid, and less so to nonanoic acid. It has been reported that the C6-C10 medium-chain fatty acids repel various insects including many drosophilids and mosquitos. We show that the C6-C10 medium-chain fatty acids elicited antennal responses of both sexes of A. segetum, while only octanoic acid had repellent effect to the moths in a behavioral assay. In addition, using fluorescence in situ hybridization, we demonstrated that the five IRs and their co-receptor AsegIR8a are not located in coeloconic sensilla as found in Drosophila, but in basiconic or trichoid sensilla. CONCLUSIONS: Our results significantly expand the current knowledge of the insect IR family. Based on the functional data in combination with phylogenetic analysis, we propose that subfunctionalization after gene duplication plays an important role in the evolution of ligand specificities of the acid-sensing IRs in Lepidoptera.


Assuntos
Brassica napus , Dípteros , Mariposas , Receptores Odorantes , Animais , Antenas de Artrópodes , Caprilatos , Dípteros/genética , Feminino , Hibridização in Situ Fluorescente , Proteínas de Insetos/genética , Ligantes , Masculino , Mariposas/genética , Filogenia , Receptores Odorantes/genética
2.
Mol Biol Evol ; 38(11): 4934-4947, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34293158

RESUMO

Insects detect odors using an array of odorant receptors (ORs), which may expand through gene duplication. How and which new functions may evolve among related ORs within a species remain poorly investigated. We addressed this question by functionally characterizing ORs from the Eurasian spruce bark beetle Ips typographus, in which physiological and behavioral responses to pheromones, volatiles from host and nonhost trees, and fungal symbionts are well described. In contrast, knowledge of OR function is restricted to two receptors detecting the pheromone compounds (S)-(-)-ipsenol (ItypOR46) and (R)-(-)-ipsdienol (ItypOR49). These receptors belong to an Ips-specific OR-lineage comprising seven ItypORs. To gain insight into the functional evolution of related ORs, we characterized the five remaining ORs in this clade using Xenopus oocytes. Two receptors responded primarily to the host tree monoterpenes (+)-3-carene (ItypOR25) and p-cymene (ItypOR27). Two receptors responded to oxygenated monoterpenoids produced in larger relative amounts by the beetle-associated fungi, with ItypOR23 specific for (+)-trans-(1R, 4S)-4-thujanol, and ItypOR29 responding to (+)-isopinocamphone and similar ketones. ItypOR28 responded to the pheromone E-myrcenol from the competitor Ips duplicatus. Overall, the OR responses match well with those of previously characterized olfactory sensory neuron classes except that neurons detecting E-myrcenol have not been identified. The characterized ORs are under strong purifying selection and demonstrate a shared functional property in that they all primarily respond to monoterpenoids. The variation in functional groups among OR ligands and their diverse ecological origins suggest that neofunctionalization has occurred early in the evolution of this OR-lineage following gene duplication.


Assuntos
Besouros , Receptores Odorantes , Animais , Besouros/genética , Monoterpenos , Feromônios , Casca de Planta , Receptores Odorantes/genética
3.
Phytopathology ; 112(2): 387-395, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34242064

RESUMO

The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. Here, a highly resistant Chinese wild grapevine, Vitis amurensis 'Shuangyou' (SY), and the susceptible V. vinifera 'Red Globe' (RG) were selected for study, and their pathogenic infection and biochemical responses to B. cinerea were evaluated. The results revealed more trichomes on and a thicker cuticle for leaves of SY than RG under scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both SEM and TEM also showed that conidial germination, appressorium formation, and hyphal development of B. cinerea were delayed on the leaves of resistant SY. Fewer infected hyphae were also observed in leaves of resistant SY when compared with susceptible RG. The infected leaves of resistant SY harbored higher levels of cellulase and pectinase activity during the early infection stages of B. cinerea at 4 h postinoculation (hpi), and higher glucanase and chitinase activity were maintained in the inoculated leaves of SY from 4 through 18 hpi. Lignin was deposited in the infected leaves of susceptible RG but not in resistant SY. Taken together, these results provide insights into the ultrastructural characterizations and physical changes in resistant and susceptible grapevines.


Assuntos
Doenças das Plantas , Vitis , Botrytis/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Vitis/microbiologia
4.
BMC Biol ; 19(1): 16, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33499862

RESUMO

BACKGROUND: Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS: We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS: The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.


Assuntos
Proteínas de Insetos/química , Receptores Odorantes/química , Gorgulhos/química , Animais , Sítios de Ligação , Feminino , Proteínas de Insetos/genética , Ligantes , Masculino , Receptores Odorantes/genética , Gorgulhos/genética
5.
J Invertebr Pathol ; 167: 107247, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31521727

RESUMO

Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with the nematodes of the Steinernematid family, are known to produce several toxic proteins that interfere with the cellular immune responses of insects. In order to identify novel cytotoxins from Xenorhabdus spp., a fosmid library of X. stockiae HN_xs01 strain was constructed and the cytotoxicity of fosmid clones was tested against insect midgut CF-203 cells. An FS2 clone bearing the srfABC operon, originally identified in Salmonella enterica, exhibited excellent cytotoxicity against CF-203 cells. The srfABC operon alone exhibited cytotoxic effects and all three components of SrfABC toxin were essential for full cytotoxicity. Immunofluorescence studies showed that SrfABC toxin could depolymerize microtubules and disrupt mitochrondria. Flow cytometer analysis demonstrated that SrfABC toxin significantly induced G2/M phase arrest and apoptosis in CF-203 cells. Furthermore, SrfABC toxin exhibits highly injectable insecticidal activity against Helicoverpa armigera larvae. As is often found in host-associated microorganisms, SrfABC toxin is thought to play an important role in host colonization.


Assuntos
Toxinas Bacterianas/farmacologia , Mariposas/microbiologia , Rhabditoidea/microbiologia , Xenorhabdus , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Genoma Bacteriano , Biblioteca Genômica , Insetos/efeitos dos fármacos , Insetos/microbiologia , Insetos/parasitologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/parasitologia , Controle Biológico de Vetores , Xenorhabdus/genética , Xenorhabdus/metabolismo , Xenorhabdus/patogenicidade
6.
Molecules ; 24(1)2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577474

RESUMO

Botrytis cinerea is a necrotrophic fungal phytopathogen with devastating effects on many Vitis genotypes. Here, a screening of 81 Vitis genotypes for leaf resistance to B. cinerea revealed two highly resistant (HR), twelve resistant (R), twenty-five susceptible (S) and forty-two highly susceptible (HS) genotypes. We focused on the HR genotype, 'Zi Qiu' (Vitis davidii), and the HS genotype 'Riesling' (V. vinifera), to elucidate mechanisms of host resistance and susceptibility against B. cinerea, using detached leaf assays. These involved a comparison of fungal growth, reactive oxygen species (ROS) responses, jasmonic acid (JA) levels, and changes in the anti-oxidative system between the two genotypes after inoculation with B. cinerea. Our results indicated that the high-level resistance of 'Zi Qiu' can be attributed to insignificant fungal development, low ROS production, timely elevation of anti-oxidative functions, and high JA levels. Moreover, severe fungal infection of 'Riesling' and sustained ROS production coincided with relatively unchanged anti-oxidative activity, as well as low JA levels. This study provides insights into B. cinerea infection in grape, which can be valuable for breeders by providing information for selecting suitable germplasm with enhanced disease resistance.


Assuntos
Antioxidantes/metabolismo , Botrytis/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Vitis/metabolismo , Vitis/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genótipo , Espécies Reativas de Oxigênio/metabolismo , Vitis/genética
7.
Biometals ; 27(2): 317-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24535192

RESUMO

Epidemiological studies have indicated a relationship between the prevalence of diabetes and exposure to arsenic. Mechanisms by which arsenic may cause this diabetogenic effect are largely unknown. The phosphoinositide 3'-kinase (PI3K)/Akt signaling pathway plays an important role in insulin signaling by controlling glucose metabolism, in part through regulating the activity of FoxO transcription factors. The present study aimed at investigating the effect of short and long-term exposure to arsenite on insulin signaling in HepG2 human hepatoma cells, the role of PI3K/Akt signaling therein and the modulation of target genes controlled by insulin. Exposure of cells to arsenite for 24 h rendered cells less responsive toward stimulation of Akt by insulin. At the same time, short-term exposure to arsenite induced a concentration-dependent increase in phosphorylation of Akt at Ser-473, followed by phosphorylation of FoxO proteins at sites known to be phosphorylated by Akt. Phosphorylation of FoxOs was prevented by wortmannin, pointing to the involvement of PI3K. Arsenite exposure resulted in attenuation of FoxO DNA binding and in nuclear exclusion of FoxO1a-EGFP. A 24-h exposure of HepG2 cells to submicromolar concentrations of arsenite resulted in downregulation of glucose 6-phosphatase (G6Pase) and selenoprotein P (SelP) mRNA levels. Curiously, arsenite had a dual effect on SelP protein levels, inducing a small increase in the nanomolar and a distinct decrease in the micromolar concentration range. Interestingly, arsenite-induced long-term effects on G6Pase and SelP mRNA or SelP protein levels were not blocked by the PI3K inhibitor, wortmannin. In conclusion, arsenite perturbs cellular signaling pathways involved in fuel metabolism: it impairs cellular responsiveness toward insulin, while at the same time stimulating insulin-like signaling to attenuate the expression of genes involved in glucose metabolism and the release of the hepatokine SelP, which is known to modulate peripheral insulin sensitivity.


Assuntos
Arsenitos/administração & dosagem , Arsenitos/farmacologia , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Androstadienos/farmacologia , Células Hep G2 , Humanos , Selectina-P/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Wortmanina
8.
Molecules ; 19(9): 14902-18, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232709

RESUMO

Naphthoquinones may cause oxidative stress in exposed cells and, therefore, affect redox signaling. Here, contributions of redox cycling and alkylating properties of quinones (both natural and synthetic, such as plumbagin, juglone, lawsone, menadione, methoxy-naphthoquinones, and others) to cellular and inter-cellular signaling processes are discussed: (i) naphthoquinone-induced Nrf2-dependent modulation of gene expression and its potentially beneficial outcome; (ii) the modulation of receptor tyrosine kinases, such as the epidermal growth factor receptor by naphthoquinones, resulting in altered gap junctional intercellular communication. Generation of reactive oxygen species and modulation of redox signaling are properties of naphthoquinones that render them interesting leads for the development of novel compounds of potential use in various therapeutic settings.


Assuntos
Alquilantes/farmacologia , Naftoquinonas/farmacologia , Animais , Comunicação Celular , Humanos , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
9.
Insect Sci ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009986

RESUMO

In insects, the odorant receptor (OR) multigene family evolves by the birth-and-death evolutionary model, according to which the OR repertoire of each species has undergone specific gene gains and losses depending on their chemical environment, resulting in taxon-specific OR lineage radiations with different sizes in the phylogenetic trees. Despite the general divergence in the gene family across different insect orders, the ORs in moths seem to be genetically conserved across species, clustered into 23 major clades containing multiple orthologous groups with single-copy gene from each species. We hypothesized that ORs in these orthologous groups are tuned to ecologically important compounds and functionally conserved. cis-Jasmone is one of the compounds that not only primes the plant defense of neighboring receiver plants, but also functions as a behavior regulator to various insects. To test our hypothesis, using Xenopus oocyte recordings, we functionally assayed the orthologues of BmorOR56, which has been characterized as a specific receptor for cis-jasmone. Our results showed highly conserved response specificity of the BmorOR56 orthologues, with all receptors within this group exclusively responding to cis-jasmone. This is supported by the dN/dS analysis, showing that strong purifying selection is acting on this group. Moreover, molecular docking showed that the ligand binding pockets of BmorOR56 orthologues to cis-jasmone are similar. Taken together, our results suggest the high conservation of OR for ecologically important compounds across Heterocera.

10.
Ann Med ; 55(2): 2279748, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37983519

RESUMO

The intricate web of cancer biology is governed by the active participation of long non-coding RNAs (lncRNAs), playing crucial roles in cancer cells' proliferation, migration, and drug resistance. Pioneering research driven by machine learning algorithms has unveiled the profound ability of specific combinations of lncRNAs to predict the prognosis of cancer patients. These findings highlight the transformative potential of lncRNAs as powerful therapeutic targets and prognostic markers. In this comprehensive review, we meticulously examined the landscape of lncRNAs in predicting the prognosis of the top five cancers and other malignancies, aiming to provide a compelling reference for future research endeavours. Leveraging the power of machine learning techniques, we explored the predictive capabilities of diverse lncRNA combinations, revealing their unprecedented potential to accurately determine patient outcomes.


lncRNAs play crucial roles in cancer biology, regulating proliferation, migration, and drug resistance.Emerging evidence suggests that machine learning can predict cancer prognosis using specific lncRNA combinations.Comprehensive information on the predictive abilities of lncRNA combinations in oncology concerning machine learning is lacking.This review offers up-to-date vital references on diverse lncRNA combinations pertinent to future research and clinical trials.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Neoplasias/diagnóstico , Neoplasias/genética , Prognóstico , Aprendizado de Máquina
11.
Pest Manag Sci ; 78(7): 2995-3004, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35420250

RESUMO

BACKGOUND Sex pheromones of the fall armyworm, Spodoptera frugiperda, show differences in composition and proportions in different geographical populations, but always contain Z9-14:OAc as the major component. Odorant receptor neurons (ORNs) housed in the long trichoid sensilla (TS) of male antennae are essential to detect female-released sex pheromones in moths. RESULTS: In this study, we identified seven components from pheromone gland extracts of female S. frugiperda in the Yunnan population from China, including (Z)-7-dodecen-1-yl acetate (Z7-12:OAc), (Z)-9-tetradecenal (Z9-14:Ald), (Z)-9-dodecen-1-yl acetate (Z9-12:OAc), (Z)-9-tetradecen-1-yl acetate (Z9-14:OAc), (E)-11-tetradecen-1-yl acetate (E11-14:OAc), (Z)-11-tetradecen-1-yl acetate (Z11-14:OAc) and (Z)-11-hexadecen-1-yl acetate (Z11-16:OAc) at a ratio of 1.2:4:0.8:79.1:1.6:1.6:11.7 by gas chromatography coupled with mass spectrometry. Gas chromatography-electroantennographic detection showed that Z9-14:OAc, Z7-12:OAc and Z11-16:OAc are the male antennal active components. Peripheral coding of pheromones in males was investigated by single sensillum recording. Five functional neurons housed in three types of TS were identified based on profiles of neuronal responses, which are responsible for attractive component Z9-14:OAc, synergistic components Z7-12:OAc, Z11-16:OAc, interspecific pheromones (Z)-9-tetradecen-1-ol (Z9-14:OH) and (Z,E)-9,12-tetradecadien-1-yl acetate (Z9,E12-14:OAc), respectively. Wind tunnel and field tests demonstrated that a ternary combination of Z9-14:OAc, Z7-12:OAc and Z11-16:OAc at a ratio of 88:1:11 shows the strongest attractiveness to males. CONCLUSION: An optimized pheromone blend of Z9-14:OAc, Z7-12:OAc and Z11-16:OAc in an 88:1:11 ratio was identified for monitoring the invasive pest S. frugiperda in China. Five functional ORNs encoding intra- and interspecific pheromones were identified in male antennae, of which three neurons encode attractive component Z9-14:OAc, synergistic components Z7-12:OAc and Z11-16:OAc, respectively, and the other two neurons encode interspecific pheromones Z9-14:OH and Z9,E12-14:OAc, separately. © 2022 Society of Chemical Industry.


Assuntos
Mariposas , Atrativos Sexuais , Animais , China , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Mariposas/fisiologia , Feromônios/farmacologia , Atrativos Sexuais/química , Atrativos Sexuais/farmacologia , Spodoptera
12.
Hortic Res ; 8(1): 103, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931625

RESUMO

Botrytis cinerea is a major grapevine (Vitis spp.) pathogen, but some genotypes differ in their degree of resistance. For example, the Vitis vinifera cultivar Red Globe (RG) is highly susceptible, but V. amurensis Rupr Shuangyou (SY) is highly resistant. Here, we used RNA sequencing analysis to characterize the transcriptome responses of these two genotypes to B. cinerea inoculation at an early infection stage. Approximately a quarter of the genes in RG presented significant changes in transcript levels during infection, the number of which was greater than that in the SY leaves. The genes differentially expressed between infected leaves of SY and RG included those associated with cell surface structure, oxidation, cell death and C/N metabolism. We found evidence that an imbalance in the levels of reactive oxygen species (ROS) and redox homeostasis probably contributed to the susceptibility of RG to B. cinerea. SY leaves had strong antioxidant capacities and improved ROS homeostasis following infection. Regulatory network prediction suggested that WRKY and MYB transcription factors are associated with the abscisic acid pathway. Weighted gene correlation network analysis highlighted preinfection features of SY that might contribute to its increased resistance. Moreover, overexpression of VaWRKY10 in Arabidopsis thaliana and V. vinifera Thompson Seedless enhanced resistance to B. cinerea. Collectively, our study provides a high-resolution view of the transcriptional changes of grapevine in response to B. cinerea infection and novel insights into the underlying resistance mechanisms.

13.
Sci Rep ; 10(1): 16262, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004839

RESUMO

Off-target interactions of drugs with the human ether-à-go-go related gene 1 (hERG1) channel have been associated with severe cardiotoxic conditions leading to the withdrawal of many drugs from the market over the last decades. Consequently, predicting drug-induced hERG-liability is now a prerequisite in any drug discovery campaign. Understanding the atomic level interactions of drug with the channel is essential to guide the efficient development of safe drugs. Here we utilize the recent cryo-EM structure of the hERG channel and describe an integrated computational workflow to characterize different drug-hERG interactions. The workflow employs various structure-based approaches and provides qualitative and quantitative insights into drug binding to hERG. Our protocol accurately differentiated the strong blockers from weak and revealed three potential anchoring sites in hERG. Drugs engaging in all these sites tend to have high affinity towards hERG. Our results were cross-validated using a fluorescence polarization kit binding assay and with electrophysiology measurements on the wild-type (WT-hERG) and on the two hERG mutants (Y652A-hERG and F656A-hERG), using the patch clamp technique on HEK293 cells. Finally, our analyses show that drugs binding to hERG disrupt and hijack certain native-structural networks in the channel, thereby, gaining more affinity towards hERG.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Biologia Computacional/métodos , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Relação Estrutura-Atividade
14.
Insect Biochem Mol Biol ; 117: 103289, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31778795

RESUMO

The Xenopus oocyte and the Human Embryonic Kidney (HEK) 293 cell expression systems are frequently used for functional characterization (deorphanization) of insect odorant receptors (ORs). However, the inherent characteristics of these heterologous systems differ in several aspects, which raises the question of whether the two systems provide comparable results, and how well the results correspond to the responses obtained from olfactory sensory neurons in vivo. Five candidate pheromone receptors were previously identified in the primitive moth Eriocrania semipurpurella (Esem) and their responses were characterized in HEK cells. We re-examined the responses of these five EsemORs in Xenopus oocytes. We showed that in both systems, EsemOR1 specifically responded to the plant volatile ß-caryophyllene. EsemOR3 responded stronger to the pheromone component (S,Z)-6-nonen-2-ol than to its enantiomer (R,Z)-6-nonen-2-ol, the second pheromone component. However, EsemOR3 also responded secondarily to the plant volatile ß-caryophyllene in the oocyte system, but not in the HEK cell system. EsemOR4 was unresponsive in the HEK cells, but responded primarily to (R,Z)-6-nonen-2-ol followed by (S,Z)-6-nonen-2-ol in the oocytes, representing a discovery of a new pheromone receptor in this species. EsemOR5 was broadly tuned in both systems, but the rank order among the most active pheromone compounds and antagonists was different. EsemOR6 showed no response to any compound in either system. We compared the results obtained in the two different heterologous systems with the activity previously recorded in vivo, and performed in situ hybridization to localize the expression of these OR genes in the antennae. In spite of similar results overall, differences in OR responses between heterologous expression systems suggest that conclusions about the function of individual ORs may differ depending on the system used for deorphanization.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Receptores Odorantes/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Células HEK293 , Humanos , Masculino , Oócitos , Xenopus laevis/metabolismo
15.
Toxins (Basel) ; 11(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766712

RESUMO

Our previous study showed that the srfABC operon, which was originally identified in Salmonella enterica as an SsrB-regulated operon clustered with the flagellar class 2 operon, exhibited significant cytotoxicity against insect midgut CF-203 cells and injectable insecticidal activity against Helicoverpa armigera larvae. The srfABC operon was widely distributed among bacteria, which raises the question of their biological roles in different species. In this study, we investigated the cytotoxic effect of SrfABC toxin on mammalian cell lines. When simultaneously expressed in the Escherichia coli cytoplasm, SrfABC exhibited cytotoxicity against all tested mammalian cancer cell lines (B16, 4T-1, Hep-3B, and HeLa) in a dose-dependent manner. Intracellular expression of SrfA-FLAG, SrfB-FLAG, or SrfC-FLAG also resulted in inhibition of proliferation and apoptosis on HeLa cells. When incubated with HeLa cells separately, SrfA, SrfB, and SrfC proteins alone could enter HeLa cells, then induce apoptosis and cytotoxicity. SrfC protein shifts its localization from cytoplasm to nucleus with the aid of SrfA and/or SrfB protein. Although SrfA, SrfB, and SrfC proteins alone exhibited a cytotoxic effect against HeLa cells, all three components were essential for the full cytotoxicity. Native PAGE and co-immunoprecipitation assay demonstrated that SrfA, SrfB, and SrfC proteins could interact with each other and form a heteromeric complex.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Xenorhabdus/química , Antibióticos Antineoplásicos/química , Toxinas Bacterianas/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Plasmídeos/genética
16.
Redox Biol ; 20: 19-27, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30261343

RESUMO

Diethyl maleate (DEM), a thiol-reactive α,ß-unsaturated carbonyl compound, depletes glutathione (GSH) in exposed cells and was previously shown by us to elicit a stress response in Caenorhabditis elegans that, at lower concentrations, results in enhanced stress resistance and longer lifespan. This hormetic response was mediated through both the Nrf2 ortholog, SKN-1, and the forkhead box O (FOXO) family transcription factor DAF-16. As FOXO signaling is evolutionarily conserved, we analyzed here the effects of DEM exposure on FOXO in cultured human cells (HepG2, HEK293). DEM elicited nuclear accumulation of GFP-coupled wild-type human FOXO1, as well as of a cysteine-deficient FOXO1 mutant. Despite the nuclear accumulation of FOXO1, neither FOXO1 DNA binding nor FOXO target gene expression were stimulated, suggesting that DEM causes nuclear accumulation but not activation of FOXO1. FOXO1 nuclear exclusion elicited by insulin or xenobiotics such as arsenite or copper ions was attenuated by DEM, suggesting that DEM interfered with nuclear export. In addition, insulin-induced FOXO1 phosphorylation at Thr-24, which is associated with FOXO1 nuclear exclusion, was attenuated upon exposure to DEM. Different from FOXO-dependent expression of genes, Nrf2 target gene mRNAs were elevated upon exposure to DEM. These data suggest that, different from C. elegans, DEM elicits opposing effects on the two stress-responsive transcription factors, Nrf2 and FOXO1, in cultured human cells.


Assuntos
Núcleo Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Maleatos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Glutationa , Células HEK293 , Células Hep G2 , Humanos , Espaço Intracelular/metabolismo , Modelos Biológicos , Fosforilação , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Estresse Fisiológico
17.
Front Plant Sci ; 6: 854, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579134

RESUMO

The necrotrophic fungus Botrytis cinerea is a major threat to grapevine cultivation worldwide. A screen of 41 Vitis genotypes for leaf resistance to B. cinerea suggested species independent variation and revealed 18 resistant Chinese wild Vitis genotypes, while most investigated V. vinifera, or its hybrids, were susceptible. A particularly resistant Chinese wild Vitis, "Pingli-5" (V. sp. [Qinling grape]) and a very susceptible V. vinifera cultivar, "Red Globe" were selected for further study. Microscopic analysis demonstrated that B. cinerea growth was limited during early infection on "Pingli-5" before 24 h post-inoculation (hpi) but not on Red Globe. It was found that reactive oxygen species (ROS) and antioxidative system were associated with fungal growth. O[Formula: see text] accumulated similarly in B. cinerea 4 hpi on both Vitis genotypes. Lower levels of O[Formula: see text] (not H2O2) were detected 4 hpi and ROS (H2O2 and O[Formula: see text]) accumulation from 8 hpi onwards was also lower in "Pingli-5" leaves than in "Red Globe" leaves. B. cinerea triggered sustained ROS production in "Red Globe" but not in "Pingli-5" with subsequent infection progresses. Red Globe displayed little change in antioxidative activities in response to B. cinerea infection, instead, antioxidative activities were highly and timely elevated in resistant "Pingli-5" which correlated with its minimal ROS increases and its high resistance. These findings not only enhance our understanding of the resistance of Chinese wild Vitis species to B. cinerea, but also lay the foundation for breeding B. cinerea resistant grapes in the future.

18.
Sci Rep ; 5: 7888, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25601555

RESUMO

The chemoreception role of moth ovipositor has long been suggested, but its molecular mechanism is mostly unknown. By transcriptomic analysis of the female ovipositor-pheromone glands (OV-PG) of Chilo suppressalis, we obtained 31 putative chemoreception genes (9 OBPs, 10 CSPs, 2 ORs, 1 SNMP, 8 CXEs and 1 AOX), in addition to 32 genes related to sex pheromone biosynthesis (1 FAS, 6 Dess, 10 FARs, 2 ACOs, 1 ACC, 4 FATPs, 3 ACBPs and 5 ELOs). Tissue expression profiles further revealed that CsupCSP2 and CsupCSP10 were OV-PG biased, while most chemoreception genes were highly and preferably expressed in antennae. This suggests that OV-PG employs mostly the same chemoreception proteins as in antennae, although the physiological roles of these proteins might be different in OV-PG. Of the 32 pheromone biosynthesis related genes, CsupDes4, CsupDes5 and CsupFAR2 are strongly OV-PG biased, and clustered with functionally validated genes from other moths, strongly indicating their involvement in specific step of the pheromone biosynthesis. Our study for the first time identified a large number of putative chemoreception genes, and provided an important basis for exploring the chemoreception mechanisms of OV-PG in C. suppressalis, as well as other moth species.


Assuntos
Proteínas de Insetos/genética , Lepidópteros/genética , Feromônios/genética , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/biossíntese , Proteínas de Insetos/isolamento & purificação , Oviposição/genética , Feromônios/biossíntese , Feromônios/isolamento & purificação
19.
Free Radic Biol Med ; 75 Suppl 1: S53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26461409

RESUMO

Diethyl maleate (DEM) is a thiol-depleting agent frequently employed in cell culture analyses. Here, we investigated the effect of DEM exposure on insulin signaling at the level of FoxO transcription factor activity and its potential consequences for stress resistance and life span. Exposure of HepG2 human hepatoma cells to subcytotoxic concentrations of DEM resulted in nuclear accumulation of overexpressed EGFP-tagged FoxO1a. DEM-induced nuclear accumulation overrode insulin-induced nuclear exclusion of FoxO1a. Despite a slightly enhanced FoxO DNA binding activity in DEM-exposed cells, expression of FoxO-regulated genes (glucose 6-phosphatase, selenoprotein P) was downregulated, indicating that nuclear accumulation does not necessarily coincide with enhanced transcription factor activity. To test for an effect of DEM on organismal stress resistance, we exposed C. elegans roundworms to the thiol depletor. Survival in the presence of the redox cycler paraquat was significantly increased following exposure to DEM, implying that DEM pre-exposure induced cellular resistance against oxidative stress. Furthermore, in DEM-exposed C. elegans populations expressing a GFP-tagged version of the C. elegans FoxO ortholog, DAF-16, numbers of worms with predominantly nuclear DAF-16 increased - in line with the findings from HepG2 cells. In keeping with the known function of DAF-16 in stress resistance, C. elegans life span was elevated upon exposure to DEM in a concentration-dependent manner. A maximum extension of life span and deceleration of aging was achieved at 100 µ? of DEM. In summary, exposure to DEM caused a modulation of FoxO subcellular localization in both HepG2 cells and C. elegans roundworms, followed by a modulation of life span and stress resistance in C. elegans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA