Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroscience ; 155(4): 1030-47, 2008 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-18674601

RESUMO

Rats with complete spinal transections are capable of acquiring a simple instrumentally trained response. If rats receive shock to one hind limb when the limb is extended (controllable shock), the spinal cord will learn to hold the leg in a flexed position that minimizes shock exposure. If shock is delivered irrespective of leg position, subjects do not exhibit an increase in flexion duration and subsequently fail to learn when tested with controllable shock (learning deficit). Just 6 min of variable intermittent shock produces a learning deficit that lasts 24 h. Evidence suggests that the neural mechanisms underlying the learning deficit may be related to those involved in other instances of spinal plasticity (e.g. windup, long-term potentiation). The present paper begins to explore these relations by demonstrating that direct stimulation of the sciatic nerve also impairs instrumental learning. Six minutes of electrical stimulation (mono- or biphasic direct current [DC]) of the sciatic nerve in spinally transected rats produced a voltage-dependent learning deficit that persisted for 24 h (experiments 1-2) and was dependent on C-fiber activation (experiment 7). Exposure to continuous stimulation did not produce a deficit, but intermittent burst or single pulse (as short as 0.1 ms) stimulation (delivered at a frequency of 0.5 Hz) did, irrespective of the pattern (fixed or variable) of stimulus delivery (experiments 3-6, 8). When the duration of stimulation was extended from 6 to 30 min, a surprising result emerged; shocks applied in a random (variable) fashion impaired subsequent learning whereas shocks given in a regular pattern (fixed spacing) did not (experiments 9-10). The results imply that spinal neurons are sensitive to temporal relations and that stimulation at regular intervals can have a restorative effect.


Assuntos
Condicionamento Operante/fisiologia , Estimulação Elétrica , Nervo Isquiático/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Análise de Variância , Animais , Comportamento Animal/efeitos da radiação , Relação Dose-Resposta à Radiação , Vias Eferentes/fisiologia , Estimulação Elétrica/métodos , Membro Posterior/fisiopatologia , Membro Posterior/efeitos da radiação , Deficiências da Aprendizagem/etiologia , Masculino , Psicofísica , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos da radiação , Limiar Sensorial/efeitos da radiação , Fatores de Tempo
2.
Neuroscience ; 200: 74-90, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22056599

RESUMO

Brain-derived neurotrophic factor (BDNF) has been characterized as a potent modulator of neural plasticity in both the brain and spinal cord. The present experiments use an in vivo model system to demonstrate that training with controllable stimulation increases spinal BDNF expression and engages a BDNF-dependent process that promotes adaptive plasticity. Spinally transected rats administered legshock whenever one hind limb is extended (controllable stimulation) exhibit a progressive increase in flexion duration. This simple form of response-outcome (instrumental) learning is not observed when shock is given independent of leg position (uncontrollable stimulation). Uncontrollable electrical stimulation also induces a lasting effect that impairs learning for up to 48 h. Training with controllable shock can counter the adverse consequences of uncontrollable stimulation, to both prevent and reverse the learning deficit. Here it is shown that the protective and restorative effect of instrumental training depends on BDNF. Cellular assays showed that controllable stimulation increased BDNF mRNA expression and protein within the lumbar spinal cord. These changes were associated with an increase in the BDNF receptor TrkB protein within the dorsal horn. Evidence is then presented that these changes play a functional role in vivo. Application of a BDNF inhibitor (TrkB-IgG) blocked the protective effect of instrumental training. Direct (intrathecal) application of BDNF substituted for instrumental training to block both the induction and expression of the learning deficit. Uncontrollable stimulation also induced an increase in mechanical reactivity (allodynia), and this too was prevented by BDNF. TrkB-IgG blocked the restorative effect of instrumental training and intrathecal BDNF substituted for training to reverse the deficit. Taken together, these findings outline a critical role for BDNF in mediating the beneficial effects of controllable stimulation on spinal plasticity.


Assuntos
Adaptação Fisiológica/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Condicionamento Operante/fisiologia , Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Medula Espinal/metabolismo , Análise de Variância , Animais , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/genética , Estimulação Elétrica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Imunoglobulina G/farmacologia , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Estimulação Física , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/imunologia , Receptor trkB/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA