Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 187(4): 897-913.e18, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280374

RESUMO

Canonically, the complement system is known for its rapid response to remove microbes in the bloodstream. However, relatively little is known about a functioning complement system on intestinal mucosal surfaces. Herein, we report the local synthesis of complement component 3 (C3) in the gut, primarily by stromal cells. C3 is expressed upon commensal colonization and is regulated by the composition of the microbiota in healthy humans and mice, leading to an individual host's specific luminal C3 levels. The absence of membrane attack complex (MAC) components in the gut ensures that C3 deposition does not result in the lysis of commensals. Pathogen infection triggers the immune system to recruit neutrophils to the infection site for pathogen clearance. Basal C3 levels directly correlate with protection against enteric infection. Our study reveals the gut complement system as an innate immune mechanism acting as a vigilant sentinel that combats pathogens and spares commensals.


Assuntos
Complemento C3 , Mucosa Intestinal , Microbiota , Animais , Humanos , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neutrófilos , Complemento C3/metabolismo , Células Estromais/metabolismo
2.
Cell ; 181(7): 1533-1546.e13, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32631492

RESUMO

The gut microbiome is the resident microbial community of the gastrointestinal tract. This community is highly diverse, but how microbial diversity confers resistance or susceptibility to intestinal pathogens is poorly understood. Using transplantation of human microbiomes into several animal models of infection, we show that key microbiome species shape the chemical environment of the gut through the activity of the enzyme bile salt hydrolase. The activity of this enzyme reduced colonization by the major human diarrheal pathogen Vibrio cholerae by degrading the bile salt taurocholate that activates the expression of virulence genes. The absence of these functions and species permits increased infection loads on a personal microbiome-specific basis. These findings suggest new targets for individualized preventative strategies of V. cholerae infection through modulating the structure and function of the gut microbiome.


Assuntos
Cólera/metabolismo , Suscetibilidade a Doenças/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Animais , Ácidos e Sais Biliares , Cólera/microbiologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal/métodos , Feminino , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Hidrolases/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Ácido Taurocólico/metabolismo , Vibrio cholerae/patogenicidade , Vibrio cholerae/fisiologia , Virulência
3.
Proc Natl Acad Sci U S A ; 119(11): e2121180119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254905

RESUMO

SignificanceIn a polymicrobial battlefield where different species compete for nutrients and colonization niches, antimicrobial compounds are the sword and shield of commensal microbes in competition with invading pathogens and each other. The identification of an Escherichia coli-produced genotoxin, colibactin, and its specific targeted killing of enteric pathogens and commensals, including Vibrio cholerae and Bacteroides fragilis, sheds light on our understanding of intermicrobial interactions in the mammalian gut. Our findings elucidate the mechanisms through which genotoxins shape microbial communities and provide a platform for probing the larger role of enteric multibacterial interactions regarding infection and disease outcomes.


Assuntos
Cólera/microbiologia , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Interações Microbianas , Mutagênicos/metabolismo , Vibrio cholerae/fisiologia , Animais , Antibiose , Cólera/mortalidade , Dano ao DNA , Modelos Animais de Doenças , Escherichia coli/fisiologia , Humanos , Camundongos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prognóstico , Espécies Reativas de Oxigênio , Vibrio cholerae/efeitos dos fármacos
4.
PLoS Pathog ; 18(6): e1010581, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35714156

RESUMO

Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. To colonize mammalian hosts, this pathogen must defend against host-derived toxic compounds, such as nitric oxide (NO) and NO-derived reactive nitrogen species (RNS). RNS can covalently add an NO group to a reactive cysteine thiol on target proteins, a process called protein S-nitrosylation, which may affect bacterial stress responses. To better understand how V. cholerae regulates nitrosative stress responses, we profiled V. cholerae protein S-nitrosylation during RNS exposure. We identified an S-nitrosylation of cysteine 235 of AphB, a LysR-family transcription regulator that activates the expression of tcpP, which activates downstream virulence genes. Previous studies show that AphB C235 is sensitive to O2 and reactive oxygen species (ROS). Under microaerobic conditions, AphB formed dimer and directly repressed transcription of hmpA, encoding a flavohemoglobin that is important for NO resistance of V. cholerae. We found that tight regulation of hmpA by AphB under low nitrosative stress was important for V. cholerae optimal growth. In the presence of NO, S-nitrosylation of AphB abolished AphB activity, therefore relieved hmpA expression. Indeed, non-modifiable aphBC235S mutants were sensitive to RNS in vitro and drastically reduced colonization of the RNS-rich mouse small intestine. Finally, AphB S-nitrosylation also decreased virulence gene expression via debilitation of tcpP activation, and this regulation was also important for V. cholerae RNS resistance in vitro and in the gut. These results suggest that the modulation of the activity of virulence gene activator AphB via NO-dependent protein S-nitrosylation is critical for V. cholerae RNS resistance and colonization.


Assuntos
Vibrio cholerae , Animais , Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica , Hempa/metabolismo , Mamíferos , Camundongos , Regiões Promotoras Genéticas , Transativadores/genética , Virulência/genética
5.
Nature ; 515(7527): 423-6, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25231861

RESUMO

Given the global burden of diarrhoeal diseases, it is important to understand how members of the gut microbiota affect the risk for, course of, and recovery from disease in children and adults. The acute, voluminous diarrhoea caused by Vibrio cholerae represents a dramatic example of enteropathogen invasion and gut microbial community disruption. Here we conduct a detailed time-series metagenomic study of faecal microbiota collected during the acute diarrhoeal and recovery phases of cholera in a cohort of Bangladeshi adults living in an area with a high burden of disease. We find that recovery is characterized by a pattern of accumulation of bacterial taxa that shows similarities to the pattern of assembly/maturation of the gut microbiota in healthy Bangladeshi children. To define the underlying mechanisms, we introduce into gnotobiotic mice an artificial community composed of human gut bacterial species that directly correlate with recovery from cholera in adults and are indicative of normal microbiota maturation in healthy Bangladeshi children. One of the species, Ruminococcus obeum, exhibits consistent increases in its relative abundance upon V. cholerae infection of the mice. Follow-up analyses, including mono- and co-colonization studies, establish that R. obeum restricts V. cholerae colonization, that R. obeum luxS (autoinducer-2 (AI-2) synthase) expression and AI-2 production increase significantly with V. cholerae invasion, and that R. obeum AI-2 causes quorum-sensing-mediated repression of several V. cholerae colonization factors. Co-colonization with V. cholerae mutants discloses that R. obeum AI-2 reduces Vibrio colonization/pathogenicity through a novel pathway that does not depend on the V. cholerae AI-2 sensor, LuxP. The approach described can be used to mine the gut microbiota of Bangladeshi or other populations for members that use autoinducers and/or other mechanisms to limit colonization with V. cholerae, or conceivably other enteropathogens.


Assuntos
Cólera/microbiologia , Intestinos/microbiologia , Microbiota/fisiologia , Ruminococcus/fisiologia , Vibrio cholerae/fisiologia , Vibrio cholerae/patogenicidade , Animais , Bangladesh , Criança , Estudos de Coortes , Diarreia/microbiologia , Fezes/microbiologia , Regulação Bacteriana da Expressão Gênica , Vida Livre de Germes , Saúde , Humanos , Masculino , Metagenoma/genética , Camundongos , Microbiota/genética , Percepção de Quorum/fisiologia , Ruminococcus/isolamento & purificação , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
6.
Gut Microbes ; 15(1): 2229945, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400966

RESUMO

Inflammatory bowel disease (IBD) is a multifactorial disease with increasing incidence in the U.S. suggesting that environmental factors, including diet, are involved. It has been suggested that excessive consumption of linoleic acid (LA, C18:2 omega-6), which must be obtained from the diet, may promote the development of IBD in humans. To demonstrate a causal link between LA and IBD, we show that a high fat diet (HFD) based on soybean oil (SO), which is comprised of ~55% LA, increases susceptibility to colitis in several models, including IBD-susceptible IL10 knockout mice. This effect was not observed with low-LA HFDs derived from genetically modified soybean oil or olive oil. The conventional SO HFD causes classical IBD symptoms including immune dysfunction, increased intestinal epithelial barrier permeability, and disruption of the balance of isoforms from the IBD susceptibility gene Hepatocyte Nuclear Factor 4α (HNF4α). The SO HFD causes gut dysbiosis, including increased abundance of an endogenous adherent invasive Escherichia coli (AIEC), which can use LA as a carbon source. Metabolomic analysis shows that in the mouse gut, even in the absence of bacteria, the presence of soybean oil increases levels of LA, oxylipins and prostaglandins. Many compounds in the endocannabinoid system, which are protective against IBD, are decreased by SO both in vivo and in vitro. These results indicate that a high LA diet increases susceptibility to colitis via microbial and host-initiated pathways involving alterations in the balance of bioactive metabolites of omega-6 and omega-3 polyunsaturated fatty acids, as well as HNF4α isoforms.


Assuntos
Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Endocanabinoides , Óleo de Soja , Ácido Linoleico , Colite/induzido quimicamente , Colite/genética , Colite/microbiologia , Dieta Hiperlipídica/efeitos adversos
7.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778396

RESUMO

Canonically, complement is a serum-based host defense system that protects against systemic microbial invasion. Little is known about the production and function of complement components on mucosal surfaces. Here we show gut complement component 3 (C3), central to complement function, is regulated by the composition of the microbiota in healthy humans and mice, leading to host-specific gut C3 levels. Stromal cells in intestinal lymphoid follicles (LFs) are the predominant source of intestinal C3. During enteric infection with Citrobacter rodentium or enterohemorrhagic Escherichia coli, luminal C3 levels increase significantly and are required for protection. C. rodentium is remarkably more invasive to the gut epithelium of C3-deficient mice than of wild-type mice. In the gut, C3-mediated phagocytosis of C. rodentium functions to clear pathogens. Our study reveals that variations in gut microbiota determine individuals’ intestinal mucosal C3 levels, dominantly produced by LF stromal cells, which directly correlate with protection against enteric infection. Highlights: Gut complement component 3 (C3) is induced by the microbiome in healthy humans and mice at a microbiota-specific level.Gut stromal cells located in intestinal lymphoid follicles are a major source of luminal C3 During enteric infections with Citrobacter rodentium or enterohemorrhagic Escherichia coli, gut luminal C3 levels increase and are required for protection. C. rodentium is significantly more invasive of the gut epithelium in C3-deficient mice when compared to WT mice. In the gut, C3-mediated opsonophagocytosis of C. rodentium functions to clear pathogens.

8.
Front Cell Infect Microbiol ; 12: 861677, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573801

RESUMO

The commensal microbes of the gut microbiota make important contributions to host defense against gastrointestinal pathogens, including Vibrio cholerae, the etiologic agent of cholera. As interindividual microbiota variation drives individual differences in infection susceptibility, we examined both host and V. cholerae gene expression during infection of suckling mice transplanted with different model human commensal communities, including an infection-susceptible configuration representing communities damaged by recurrent diarrhea and malnutrition in cholera endemic areas and a representative infection-resistant microbiota characteristic of healthy individuals. In comparison to colonization of animals with resistant microbiota, animals bearing susceptible microbiota challenged with V. cholerae downregulate genes associated with generation of reactive oxygen/nitrogen stress, while V. cholerae in these animals upregulates biofilm-associated genes. We show that V. cholerae in susceptible microbe infection contexts are more resistant to oxidative stress and inhibitory bile metabolites generated by the action of commensal microbes and that both phenotypes are dependent on biofilm-associated genes, including vpsL. We also show that susceptible and infection-resistant microbes drive different bile acid compositions in vivo by the action of bile salt hydrolase enzymes. Taken together, these findings provide a better understanding of how the microbiota uses multiple mechanisms to modulate the infection-associated host environment encountered by V. cholerae, leading to commensal-dependent differences in infection susceptibility.


Assuntos
Cólera , Microbiota , Vibrio cholerae , Animais , Biofilmes , Suscetibilidade a Doenças , Regulação Bacteriana da Expressão Gênica , Intestinos , Camundongos , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
9.
Front Microbiol ; 13: 903136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910595

RESUMO

Nematodes in the genus Phasmarhabditis can infect and kill slugs and snails, which are important agricultural pests. This useful trait has been commercialized by the corporation BASF after they mass produced a product labeled Nemaslug®. The product contains Phasmarhabditis hermaphrodita, which has been cultured with Moraxella osloensis, a bacterial strain that was originally thought to be responsible for causing mortality in slugs and snails. The exact mechanism leading to death in a Phasmarhabditis infected host is unknown but may involve contributions from nematode-associated bacteria. The naturally occurring microbial community of Phasmarhabditis is unexplored; the previous Phasmarhabditis microbial community studies have focused on laboratory grown or commercially reared nematodes, and in order to obtain a deeper understanding of the parasite and its host interactions, it is crucial to characterize the natural microbial communities associated with this organism in the wild. We sampled Phasmarhabditis californica, Phasmarhabditis hermaphrodita, and Phasmarhabditis papillosa directly from their habitats in Central and Southern California nurseries and garden centers and identified their native microbial community via 16S amplicon sequencing. We found that the Phasmarhabditis microbial community was influenced by species, location, and possibly gastropod host from which the nematode was collected. The predominant bacteria of the Phasmarhabditis isolates collected included Shewanella, Clostridium perfringens, Aeromonadaceae, Pseudomonadaceae, and Acinetobacter. Phasmarhabditis papillosa isolates exhibited an enrichment with species belonging to Acinetobacter or Pseudomonadaceae. However, further research must be performed to determine if this is due to the location of isolate collection or a species specific microbial community pattern. More work on the natural microbial community of Phasmarhabditis is needed to determine the role of bacteria in nematode virulence.

10.
Behav Processes ; 199: 104650, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35504410

RESUMO

The gut microbiome can affect various aspects of both behavior and physiology, including exercise ability, but effects on voluntary exercise have rarely been studied. We studied females from a selection experiment in which 4 replicate High Runner (HR) lines of mice are bred for voluntary exercise and compared with 4 non-selected control (C) lines. HR and C mice differ in several traits that likely interact with the gut microbiome, including higher daily running distance, body temperatures when running, spontaneous physical activity when housed without wheels, and food consumption. After two weeks of wheel access to reach a stable plateau in daily running, mice were administered broad-spectrum antibiotics for 10 days. Antibiotic treatment caused a significant reduction in daily wheel-running distance in the HR mice (-21%) but not in the C mice. Antibiotics did not affect body mass or food consumption in either HR or C mice, and we did not observe sickness behavior. Wheel running by HR mice did not recover during the 12 days following cessation of antibiotics. The decreased wheel-running in HR but not C mice, with no apparent negative side effects of antibiotics, suggests that the HR microbiome is an important component of their high-running phenotype.


Assuntos
Condicionamento Físico Animal , Esportes , Animais , Antibacterianos/farmacologia , Feminino , Camundongos , Atividade Motora/fisiologia , Fenótipo , Condicionamento Físico Animal/fisiologia
11.
Life Sci ; 289: 120094, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710444

RESUMO

AIMS: To characterize exercise fatigue, metabolic phenotype and cognitive and mood deficits correlated with brain neuroinflammatory and gut microbiome changes in a chronic Gulf War Illness (GWI) mouse model. The latter have been described in an accompanying paper [1]. MAIN METHODS: Adult male C57Bl/6N mice were exposed for 28 days (5 days/week) to pyridostigmine bromide: 6.5 mg/kg, b.i.d., P.O. (GW1) or 8.7 mg/kg, q.d., P.O. (GW2); topical permethrin (1.3 mg/kg in 100% DMSO) and N,N-diethyl-meta-toluamide (DEET 33% in 70% EtOH) and restraint stress (5 min). Exercise, metabolic and behavioral endpoints were compared to sham stress control (CON/S). KEY FINDINGS: Relative to CON/S, GW2 presented persistent exercise intolerance (through post-treatment (PT) day 161), deficient associative learning/memory, and transient insulin insensitivity. In contrast to GW2, GW1 showed deficient long-term object recognition memory, milder associative learning/memory deficit, and behavioral despair. SIGNIFICANCE: Our findings demonstrate that GW chemicals dose-dependently determine the presentation of exercise fatigue and severity/type of cognitive/mood-deficient phenotypes that show persistence. Our comprehensive mouse model of GWI recapitulates the major multiple symptom domains characterizing GWI, including fatigue and cognitive impairment that can be used to more efficiently develop diagnostic tests and curative treatments for ill Gulf War veterans.


Assuntos
Fadiga , Glucose/metabolismo , Deficiências da Aprendizagem , Síndrome do Golfo Pérsico , Brometo de Piridostigmina/efeitos adversos , Animais , Modelos Animais de Doenças , Fadiga/induzido quimicamente , Fadiga/metabolismo , Fadiga/patologia , Humanos , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/metabolismo , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Síndrome do Golfo Pérsico/induzido quimicamente , Síndrome do Golfo Pérsico/metabolismo , Síndrome do Golfo Pérsico/patologia , Brometo de Piridostigmina/farmacologia
12.
Life Sci ; 288: 120153, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801513

RESUMO

AIMS: To characterize neuroinflammatory and gut dysbiosis signatures that accompany exaggerated exercise fatigue and cognitive/mood deficits in a mouse model of Gulf War Illness (GWI). METHODS: Adult male C57Bl/6N mice were exposed for 28 d (5 d/wk) to pyridostigmine bromide (P.O.) at 6.5 mg/kg/d, b.i.d. (GW1) or 8.7 mg/kg/d, q.d. (GW2); topical permethrin (1.3 mg/kg), topical N,N-diethyl-meta-toluamide (33%) and restraint stress (5 min). Animals were phenotypically evaluated as described in an accompanying article [124] and sacrificed at 6.6 months post-treatment (PT) to allow measurement of brain neuroinflammation/neuropathic pain gene expression, hippocampal glial fibrillary acidic protein, brain Interleukin-6, gut dysbiosis and serum endotoxin. KEY FINDINGS: Compared to GW1, GW2 showed a more intense neuroinflammatory transcriptional signature relative to sham stress controls. Interleukin-6 was elevated in GW2 and astrogliosis in hippocampal CA1 was seen in both GW groups. Beta-diversity PCoA using weighted Unifrac revealed that gut microbial communities changed after exposure to GW2 at PT188. Both GW1 and GW2 displayed systemic endotoxemia, suggesting a gut-brain mechanism underlies the neuropathological signatures. Using germ-free mice, probiotic supplementation with Lactobacillus reuteri produced less gut permeability than microbiota transplantation using GW2 feces. SIGNIFICANCE: Our findings demonstrate that GW agents dose-dependently induce differential neuropathology and gut dysbiosis associated with cognitive, exercise fatigue and mood GWI phenotypes. Establishment of a comprehensive animal model that recapitulates multiple GWI symptom domains and neuroinflammation has significant implications for uncovering pathophysiology, improving diagnosis and treatment for GWI.


Assuntos
Disfunção Cognitiva/patologia , Disbiose/patologia , Fadiga/patologia , Microbioma Gastrointestinal , Doenças Neuroinflamatórias/patologia , Síndrome do Golfo Pérsico/tratamento farmacológico , Condicionamento Físico Animal , Brometo de Piridostigmina/toxicidade , Animais , Biomarcadores/análise , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/toxicidade , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Disbiose/etiologia , Disbiose/metabolismo , Endotoxemia/etiologia , Endotoxemia/metabolismo , Endotoxemia/patologia , Fadiga/etiologia , Fadiga/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Gliose/etiologia , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/etiologia , Neuralgia/metabolismo , Neuralgia/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Brometo de Piridostigmina/administração & dosagem
13.
Proc Natl Acad Sci U S A ; 105(28): 9769-74, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18606988

RESUMO

To successfully infect a host and cause the diarrheal disease cholera, Vibrio cholerae must penetrate the intestinal mucosal layer and express virulence genes. Previous studies have demonstrated that the transcriptional regulator HapR, which is part of the quorum sensing network in V. cholerae, represses the expression of virulence genes. Here, we show that hapR expression is also modulated by the regulatory network that governs flagellar assembly. Specifically, FliA, which is the alternative sigma-factor (sigma(28)) that activates late-class flagellin genes in V. cholerae, represses hapR expression. In addition, we show that mucin penetration by V. cholerae is sufficient to break flagella and so cause the secretion of FlgM, the anti-sigma factor that inhibits FliA activity. During initial colonization of host intestinal tissue, hapR expression is repressed because of low cell density. However, full repression of hapR expression does not occur in fliA mutants, which results in attenuated colonization. Our results suggest that V. cholerae uses flagellar machinery to sense particular intestinal signals before colonization and enhance the expression of virulence genes by modulating the output of quorum sensing signaling.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mucosa Intestinal/microbiologia , Percepção de Quorum , Proteínas Repressoras/fisiologia , Vibrio cholerae/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Cólera/etiologia , Flagelos , Virulência/genética
14.
iScience ; 24(12): 103443, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877500

RESUMO

Cholera is a severe diarrheal disease that places a significant burden on global health. Cholera's high morbidity demands effective prophylactic strategies, but oral cholera vaccines exhibit variable efficacy in human populations. One contributor of variance in human populations is the gut microbiome, which in cholera-endemic areas is modulated by malnutrition, cholera, and non-cholera diarrhea. We conducted fecal transplants from healthy human donors and model communities of either human gut microbes that resemble healthy individuals or those of individuals recovering from diarrhea in various mouse models. We show microbiome-specific effects on host antibody responses against Vibrio cholerae, and that dysbiotic human gut microbiomes representative of cholera-endemic areas suppress the immune response against V. cholerae via CD4+ lymphocytes. Our findings suggest that gut microbiome composition at time of infection or vaccination may be pivotal for providing robust mucosal immunity, and suggest a target for improved prophylactic and therapeutic strategies for cholera.

15.
Cell Rep ; 37(13): 110164, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34965410

RESUMO

The functional and genomic diversity of the human gut microbiome is shaped by horizontal transfer of mobile genetic elements (MGEs). Characterized MGEs can encode genes beneficial for their host's self-defense (e.g., antibiotic resistance) or ability to compete for essential or limited resources (e.g., vitamins). Vitamin B12 and related compounds (corrinoids) are critical nutrients that enable colonization by members of the common gut microbe phylum, the Bacteroidetes. Herein, we identify a distinct class of MGEs in the Bacteroidetes responsible for the mobilization and exchange of the genes required for transport of corrinoids, a group of cyclic tetrapyrrole cofactors including vitamin B12 (btuGBFCD). This class includes two distinct groups of conjugative transposons (CTns) and one group of phage. Conjugative transfer and vitamin B12 transport activity of two of the CTns were confirmed in vitro and in vivo, demonstrating the important role MGEs play in distribution of corrinoid transporters in the Bacteroidetes.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroidetes/metabolismo , Corrinoides/metabolismo , Microbioma Gastrointestinal , Sequências Repetitivas Dispersas , Proteínas de Membrana Transportadoras/metabolismo , Vitamina B 12/metabolismo , Animais , Proteínas de Bactérias/genética , Bacteroidetes/crescimento & desenvolvimento , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complexo Vitamínico B/metabolismo
16.
Gut Microbes ; 13(1): 1937015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34180341

RESUMO

The bacterium Vibrio cholerae is the etiologic agent of the severe human diarrheal disease cholera. The gut microbiome, or the native community of microorganisms found in the human gastrointestinal tract, is increasingly being recognized as a factor in driving susceptibility to infection, in vivo fitness, and host interactions of this pathogen. Here, we review a subset of the emerging studies in how gut microbiome structure and microbial function are able to drive V. cholerae virulence gene regulation, metabolism, and modulate host immune responses to cholera infection and vaccination. Improved mechanistic understanding of commensal-pathogen interactions offers new perspectives in the design of prophylactic and therapeutic approaches for cholera control.


Assuntos
Cólera/microbiologia , Microbioma Gastrointestinal , Vibrio cholerae/fisiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Vibrio cholerae/genética
17.
Cell Rep ; 37(12): 110147, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936880

RESUMO

Pathogenic bacteria can rapidly respond to stresses such as reactive oxygen species (ROS) using reversible redox-sensitive oxidation of cysteine thiol (-SH) groups in regulators. Here, we use proteomics to profile reversible ROS-induced thiol oxidation in Vibrio cholerae, the etiologic agent of cholera, and identify two modified cysteines in ArcA, a regulator of global carbon oxidation that is phosphorylated and activated under low oxygen. ROS abolishes ArcA phosphorylation but induces the formation of an intramolecular disulfide bond that promotes ArcA-ArcA interactions and sustains activity. ArcA cysteines are oxidized in cholera patient stools, and ArcA thiol oxidation drives in vitro ROS resistance, colonization of ROS-rich guts, and environmental survival. In other pathogens, such as Salmonella enterica, oxidation of conserved cysteines of ArcA orthologs also promotes ROS resistance, suggesting a common role for ROS-induced ArcA thiol oxidation in modulating ArcA activity, allowing for a balance of expression of stress- and pathogenesis-related genetic programs.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Cólera/microbiologia , Proteoma/metabolismo , Proteínas Repressoras/metabolismo , Salmonella enterica/metabolismo , Compostos de Sulfidrila/metabolismo , Vibrio cholerae/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Cisteína/metabolismo , Fezes/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Camundongos , Oxirredução , Estresse Oxidativo , Fosforilação , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Infecções por Salmonella/microbiologia , Vibrio cholerae/genética
18.
STAR Protoc ; 1(3): 100200, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377094

RESUMO

The gut microbiome plays an important role in the exclusion of pathogens and, thus, infection outcomes. Microbiome-pathogen interaction studies are complicated by a lack of tractable animal models and differences in animal model versus human microbiomes. We have adapted the suckling mouse model of infection of the human pathogen Vibrio cholerae to clear murine microbes and establish human-associated gut microbes during infection. Our method allows for the easy examination of the contribution of different human microbial communities to enteropathogenesis. For complete details on the use and execution of this protocol, please refer to Alavi et al. (2020).


Assuntos
Cólera/microbiologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal/métodos , Animais , Animais Recém-Nascidos , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Interações Microbianas , Microbiota/fisiologia , Simbiose , Vibrio cholerae/patogenicidade
19.
Virulence ; 11(1): 1582-1599, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33172314

RESUMO

The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic disease cholera, representing a major global public health concern. This pathogen transitions from aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms to sense this transition in order to appropriately regulate its gene expression for infection. At the intersection of pathogen and host in the gastrointestinal tract lies the community of native gut microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical activities within the gut microbiome represents a driver of infection outcome, through their ability to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better mechanistic understanding of how commensal microbial action interacts with V. cholerae pathogenesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review a subset of this burgeoning field of research.


Assuntos
Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Animais , Proteínas de Bactérias/genética , Cólera/microbiologia , Humanos , Camundongos , Virulência
20.
Artigo em Inglês | MEDLINE | ID: mdl-32582564

RESUMO

Diabetics chronic wounds are characterized by high levels of oxidative stress (OS) and are often colonized by biofilm-forming bacteria that severely compromise healing and can result in amputation. However, little is known about the role of skin microbiota in wound healing and chronic wound development. We hypothesized that high OS levels lead to chronic wound development by promoting the colonization of biofilm-forming bacteria over commensal/beneficial bacteria. To test this hypothesis, we used our db/db-/- mouse model for chronic wounds where pathogenic biofilms develop naturally after induction of high OS immediately after wounding. We sequenced the bacterial rRNA internal transcribed spacer (ITS) gene of the wound microbiota from wound initiation to fully developed chronic wounds. Indicator species analysis, which considers a species' fidelity and specificity, was used to determine which bacterial species were strongly associated with healing wounds or chronic wounds. We found that healing wounds were colonized by a diverse and dynamic bacterial microbiome that never developed biofilms even though biofilm-forming bacteria were present. Several clinically relevant species that are present in human chronic wounds, such as Cutibacterium acnes, Achromobacter sp., Delftia sp., and Escherichia coli, were highly associated with healing wounds. These bacteria may serve as bioindicators of healing and may actively participate in the processes of wound healing and preventing pathogenic bacteria from colonizing the wound. In contrast, chronic wounds, which had high levels of OS, had low bacterial diversity and were colonized by several clinically relevant, biofilm-forming bacteria such as Pseudomonas aeruginosa, Enterobacter cloacae, Corynebacterium frankenforstense, and Acinetobacter sp. We observed unique population trends: for example, P. aeruginosa associated with aggressive biofilm development, whereas Staphylococcus xylosus was only present early after injury. These findings show that high levels of OS in the wound significantly altered the bacterial wound microbiome, decreasing diversity and promoting the colonization of bacteria from the skin microbiota to form biofilm. In conclusion, bacteria associated with non-chronic or chronic wounds could function as bioindicators of healing or non-healing (chronicity), respectively. Moreover, a better understanding of bacterial interactions between pathogenic and beneficial bacteria within an evolving chronic wound microbiota may lead to better solutions for chronic wound management.


Assuntos
Diabetes Mellitus , Microbiota , Biofilmes , Corynebacterium , Humanos , Estresse Oxidativo , Pseudomonas aeruginosa , Staphylococcus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA