RESUMO
Amyloid-beta peptide (Aß) is a neurotoxic constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aß toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, we found that inhibition of Aß25-35-induced PKCδ increased cell viability with restoration of neuronal morphology. Using cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) as the respective markers for the G1-, S-, and G2/M-phases, PKCδ inhibition mitigated cell cycle reentry (CCR) and subsequent caspase-3 cleavage induced by both Aß25-35 and Aß1-42 in the post-mitotic cortical neurons. Upstream of PKCδ, signal transducers and activators of transcription (STAT)-3 mediated PKCδ induction, CCR, and caspase-3 cleavage upon Aß exposure. Downstream of PKCδ, aberrant neuronal CCR was triggered by overactivating cyclin-dependent kinase-5 (CDK5) via calpain2-dependent p35 cleavage into p25. Finally, PKCδ and CDK5 also contributed to Aß25-35 induction of p53-upregulated modulator of apoptosis (PUMA) in cortical neurons. Together, we demonstrated that, in the post-mitotic neurons exposed to Aßs, STAT3-dependent PKCδ expression triggers calpain2-mediated p35 cleavage into p25 to overactivate CDK5, thus leading to aberrant CCR, PUMA induction, caspase-3 cleavage, and ultimately apoptosis.
Assuntos
Peptídeos beta-Amiloides , Apoptose , Ciclo Celular , Córtex Cerebral , Neurônios , Proteína Quinase C-delta , Peptídeos beta-Amiloides/metabolismo , Animais , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Proteína Quinase C-delta/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Ciclo Celular/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Caspase 3/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Transdução de Sinais/efeitos dos fármacosRESUMO
Accumulation of senile plaques mainly composed of neurotoxic amyloid-beta peptide (Aß) is a pathological hallmark of Alzheimer's disease (AD). Sestrin2 inducible by various types of stressors is known to promote autophagy and exert antioxidative effects. In this work, we revealed the molecular mechanisms underlying Aß induction of sestrin2 and tested whether antioxidation, in addition to autophagy regulation, also contributes to its neuroprotective effects in primary rat cortical neurons. We found that Aß25-35 triggered nuclear translocation of p65 and p50, two subunits of nuclear factor-kappaB (NF-κB), and p53. Aß25-35-induced sestrin2 expression was abolished by the p65 siRNA, the NF-κB inhibitor SN50, and the p53 inhibitor pifithrin-alpha (PFT-α). Further, Aß25-35 enhanced binding of p50 and p53 to sestrin2 gene promoter that was abolished respectively by the p50 shRNA and PFT-α. Both p50 shRNA and PFT-α attenuated Aß25-35-induced expression as well as nuclear translocation of all three transcription factors, namely p65, p50, and p53. Interestingly, p50 binding to the promoters of its target genes required p53 activity, whereas p50 also negatively regulated p53 binding to its target sequences. Suppression of sestrin2 expression by siRNA enhanced Aß25-35- and Aß1-42-induced production of reactive oxygen species (ROS), lipid peroxidation, and formation of 8-hydroxy-2-deoxyguanosine (8-OH-dG). In contrast, overexpression of the sestrin2 N-terminal or C-terminal fragments neutralized Aß25-35-induced ROS production. We concluded that Aß-induced sestrin2 contributing to antioxidant effects in neurons is in part mediated by p53 and NF-κB, which also mutually affect the expression of each other.
Assuntos
Antioxidantes , NF-kappa B , Peptídeos beta-Amiloides/toxicidade , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genéticaRESUMO
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease. It presents with progressive memory loss, worsens cognitive functions to the point of disability, and causes heavy socioeconomic burdens to patients, their families, and society as a whole. The underlying pathogenic mechanisms of AD are complex and may involve excitotoxicity, excessive generation of reactive oxygen species (ROS), aberrant cell cycle reentry, impaired mitochondrial function, and DNA damage. Up to now, there is no effective treatment available for AD, and it is therefore urgent to develop an effective therapeutic regimen for this devastating disease. Sestrin2, belonging to the sestrin family, can counteract oxidative stress, reduce activity of the mammalian/mechanistic target of rapamycin (mTOR), and improve cell survival. It may therefore play a crucial role in neurodegenerative diseases like AD. However, only limited studies of sestrin2 and AD have been conducted up to now. In this article, we discuss current experimental evidence to demonstrate the potential roles of sestrin2 in treating neurodegenerative diseases, focusing specifically on AD. Strategies for augmenting sestrin2 expression may strengthen neurons, adapting them to stressful conditions through counteracting oxidative stress, and may also adjust the autophagy process, these two effects together conferring neuronal resistance in cases of AD.