Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 9(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36004918

RESUMO

The aortic valve facilitates unidirectional blood flow to the systemic circulation between the left cardiac ventricle and the aorta. The valve's biomechanical function relies on thin leaflets to adequately open and close over the cardiac cycle. A monolayer of valve endothelial cells (VECs) resides on the outer surface of the aortic valve leaflet. Deeper within the leaflet are sublayers of valve interstitial cells (VICs). Valve tissue remodeling involves paracrine signaling between VECs and VICs. Aortic valve calcification can result from abnormal paracrine communication between these two cell types. VECs are known to respond to hemodynamic stimuli, and, specifically, flow abnormalities can induce VEC dysfunction. This dysfunction can subsequently change the phenotype of VICs, leading to aortic valve calcification. However, the relation between VEC-exposed flow oscillations under pulsatile flow to the progression of aortic valve calcification by VICs remains unknown. In this study, we quantified the level of flow oscillations that VECs were exposed to under dynamic culture and then immersed VICs in VEC-conditioned media. We found that VIC-induced calcification was augmented under maximum flow oscillations, wherein the flow was fully forward for half the cardiac cycle period and fully reversed for the other half. We were able to computationally correlate this finding to specific regions of the aortic valve that experience relatively high flow oscillations and that have been shown to be associated with severe calcified deposits. These findings establish a basis for future investigations on engineering calcified human valve tissues and its potential for therapeutic discovery of aortic valve calcification.

2.
Bioengineering (Basel) ; 9(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290556

RESUMO

Critical valve diseases in infants have a very poor prognosis for survival. Particularly challenging is for the valve replacement to support somatic growth. From a valve regenerative standpoint, bio-scaffolds have been extensively investigated recently. While bio-scaffold valves facilitate acute valve functionality, their xenogeneic properties eventually induce a hostile immune response. Our goal was to investigate if a bio-scaffold valve could be deposited with tissues derived from allogeneic stem cells, with a specific dynamic culture protocol to enhance the extracellular matrix (ECM) constituents, with subsequent stem cell removal. Porcine small intestinal submucosa (PSIS) tubular-shaped bio-scaffold valves were seeded with human bone marrow-derived mesenchymal stem cells (hBMMSCs), cultured statically for 8 days, and then exposed to oscillatory fluid-induced shear stresses for two weeks. The valves were then safely decellularized to remove the hBMMSCs while retaining their secreted ECM. This de novo ECM was found to include significantly higher (p < 0.05) levels of elastin compared to the ECM produced by the hBMMSCs under standard rotisserie culture. The elastin-rich valves consisted of ~8% elastin compared to the ~10% elastin composition of native heart valves. Allogeneic elastin promotes chemotaxis thereby accelerating regeneration and can support somatic growth by rapidly integrating with the host following implantation. As a proof-of-concept of accelerated regeneration, we found that valve interstitial cells (VICs) secreted significantly more (p < 0.05) collagen on the elastin-rich matrix compared to the raw PSIS bio-scaffold.

3.
Vasc Biol ; 2(1): R59-R71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923975

RESUMO

Forces generated by blood flow are known to contribute to cardiovascular development and remodeling. These hemodynamic forces induce molecular signals that are communicated from the endothelium to various cell types. The cardiovascular system consists of the heart and the vasculature, and together they deliver nutrients throughout the body. While heart valves and blood vessels experience different environmental forces and differ in morphology as well as cell types, they both can undergo pathological remodeling and become susceptible to calcification. In addition, while the plaque morphology is similar in valvular and vascular diseases, therapeutic targets available for the latter condition are not effective in the management of heart valve calcification. Therefore, research in valvular and vascular pathologies and treatments have largely remained independent. Nonetheless, understanding the similarities and differences in development, calcific/fibrous pathologies and healthy remodeling events between the valvular and vascular systems can help us better identify future treatments for both types of tissues, particularly for heart valve pathologies which have been understudied in comparison to arterial diseases.

4.
Front Cardiovasc Med ; 7: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509802

RESUMO

Support of somatic growth is a fundamental requirement of tissue-engineered valves. However, efforts thus far have been unable to maintain this support long term. A key event that will determine the valve's long-term success is the extent to which healthy host tissue remodeling can occur on the valve soon after implantation. The construct's phenotypic-status plays a critical role in accelerating tissue remodeling and engineered valve integration with the host via chemotaxis. In the current study, human bone-marrow-derived mesenchymal stem cells were utilized to seed synthetic, biodegradable scaffolds for a period of 8 days in rotisserie culture. Subsequently, cell-seeded scaffolds were exposed to physiologically relevant oscillatory shear stresses (overall mean, time-averaged shear stress, ~7.9 dynes/cm2; overall mean, oscillatory shear index, ~0.18) for an additional 2 weeks. The constructs were found to exhibit relatively augmented endothelial cell expression (CD31; compared to static controls) but concomitantly served to restrict the level of the activated smooth muscle phenotype (α-SMA) and also produced very low stem cell secretion levels of fibronectin (p < 0.05 compared to static and rotisserie controls). These findings suggest that fluid-induced oscillatory shear stresses alone are important in regulating a healthy valve phenotype of the engineered tissue matrix. Moreover, as solid stresses could lead to increased α-SMA levels, they should be excluded from conditioning during the culture process owing to their associated potential risks with pathological tissue remodeling. In conclusion, engineered valve tissues derived from mesenchymal stem cells revealed both a relatively robust valvular phenotype after exposure to physiologically relevant scales of oscillatory shear stress and may thereby serve to accelerate healthy valve tissue remodeling in the host post-implantation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA