Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lipids Health Dis ; 22(1): 114, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537607

RESUMO

Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metabolismo dos Lipídeos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Dev Dyn ; 251(3): 444-458, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34374463

RESUMO

BACKGROUND: Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS: We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS: Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.


Assuntos
Orientação de Axônios , Cones de Crescimento , Netrina-1 , Proteínas Proto-Oncogênicas c-vav , Animais , Orientação de Axônios/fisiologia , Axônios/fisiologia , Cones de Crescimento/fisiologia , Neurônios Motores/fisiologia , Netrina-1/fisiologia , Proteínas Proto-Oncogênicas c-vav/fisiologia
3.
J Neurosci ; 41(17): 3808-3821, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727334

RESUMO

To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.


Assuntos
Axônios/fisiologia , Paxilina/fisiologia , Medula Espinal/crescimento & desenvolvimento , Animais , Orientação de Axônios/fisiologia , Embrião de Galinha , Eletroporação , Efrinas/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Genes src/genética , Humanos , Masculino , Camundongos , MicroRNAs/genética , Neurônios Motores/fisiologia , Mutação/genética , Neuritos/fisiologia , Medula Espinal/citologia
4.
J Biomed Sci ; 29(1): 21, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337344

RESUMO

BACKGROUND: Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. METHODS: RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. RESULTS: Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid ß-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. CONCLUSION: Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.


Assuntos
Glioblastoma , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mitocôndrias , Temozolomida/farmacologia
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499054

RESUMO

Myeloid zinc finger 1 (MZF1), also known as zinc finger protein 42, is a zinc finger transcription factor, belonging to the Krüppel-like family that has been implicated in several types of malignancies, including glioblastoma multiforme (GBM). MZF1 is reportedly an oncogenic gene that promotes tumor progression. Moreover, higher expression of MZF1 has been associated with a worse overall survival rate among patients with GBM. Thus, MZF1 may be a promising target for therapeutic interventions. Cantharidin (CTD) has been traditionally used in Chinese medicine to induce apoptosis and inhibit cancer cell proliferation; however, the mechanism by which CTD inhibits cell proliferation remains unclear. In this study, we found that the expression of MZF1 was higher in GBM tissues than in adjacent normal tissues and low-grade gliomas. Additionally, the patient-derived GBM cells and GBM cell lines presented higher levels of MZF1 than normal human astrocytes. We demonstrated that CTD had greater anti-proliferative effects on GBM than a derivative of CTD, norcantharidin (NCTD). MZF1 expression was strongly suppressed by CTD treatment. Furthermore, MZF1 enhanced the proliferation of GBM cells and upregulated the expression of c-MYC, whereas these effects were reversed by CTD treatment. The results of our study suggest that CTD may be a promising therapeutic agent for patients with GBM and suggest a promising direction for further investigation.


Assuntos
Glioblastoma , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Cantaridina/farmacologia , Proliferação de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Regulação Neoplásica da Expressão Gênica
6.
Biochem Biophys Res Commun ; 550: 113-119, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33691197

RESUMO

B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1) appears to be essential for promoting certain types of cancer, and its inhibition effectively reduced the stemness of cancer cells. Therefore, this study aimed to investigate the potential role of BMI1 in glioma. To this end, we first investigated BMI1 expression in brain tumors using microarray datasets in ONCOMINE, which indicated that BMI1 levels were not commonly increased in clinical brain tumors. Moreover, survival plots in PROGgeneV2 also showed that BMI1 expression was not significantly associated with reduced survival in glioma patients. Interestingly, stressful serum deprivation and anchorage independence growth conditions led to an increased BMI1 expression in glioma cells. A stress-responsive pathway, HDAC/Sp1, was further identified to regulate BMI1 expression. The HDAC inhibitor vorinostat (SAHA) prevented Sp1 binding to the BMI1 promoter, leading to a decreased expression of BMI1 and attenuating tumor growth of TMZ-resistant glioma xenografts. Importantly, we further performed survival analysis using PROGgeneV2 and found that an elevated expression of HDAC1,3/Sp1/BMI1 but not BMI1 alone showed an increased risk of death in both high- and low-grade glioma patients. Thus, HDAC-mediated Sp1 deacetylation is critical for BMI1 regulation to attenuate stress- and therapy-induced death in glioma cells, and the HDAC/Sp1 axis is more important than BMI1 and appears as a therapeutic target to prevent recurrence of malignant glioma cells persisting after primary therapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioma/diagnóstico , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Linhagem Celular , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Histona Desacetilase 1/metabolismo , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Prognóstico , Regiões Promotoras Genéticas/genética , Fator de Transcrição Sp1/metabolismo , Regulação para Cima
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072831

RESUMO

Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of ß-catenin was reversed by proteasome inhibitor via the ß-catenin/ GSK3ß signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the ß-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.


Assuntos
Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Glioblastoma/tratamento farmacológico , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Repressoras/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Temozolomida/efeitos adversos , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biochem Biophys Res Commun ; 525(4): 1011-1017, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32178872

RESUMO

In seminiferous epithelium, tight junctions (TJs) between adjacent Sertoli cells constitute the blood-testis barrier and must change synchronically for germ cells to translocate from the basal to the adluminal compartment during the spermatogenic cycle. Rho GTPase activation through stimulation with specific L-selectin ligands has been proposed to modulate tight junctional dynamics. However, little is known regarding the role of Ca+2 dynamics in Sertoli cell and how Ca+2 relays L-selectin signals to modulate Rho GTPase activity in Sertoli cells, thus prompting us to investigate the Ca+2 flux induced by L-selectin ligand in ASC-17D cells. Using fluorescent real-time image, we first demonstrated the increase of intracellular Ca+2 level following L-selectin ligand stimulation. This Ca+2 increase was inhibited in ASC-17D cells pretreated with nifedipine, the L-type voltage-operated Ca+2 channel (VOCC) blocker, but not mibefradil, the T-type VOCC blocker. We then demonstrated the up-regulation of Rho and Rac1 in ASC-17D cells following the administration of L-selectin ligand, and the pre-treatment with nifedipine, but not mibefradil, prior to L-selectin ligand-binding abolished the activation of both Rho and Rac1. Together, we conclude that the activation of L-selectin induces Ca+2 influx through the L-type VOCC, which up-regulates Rho and Rac1 proteins, in ASC-17D cells.


Assuntos
Cálcio/metabolismo , Selectina L/metabolismo , Células de Sertoli/metabolismo , Espermatozoides/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio , Linhagem Celular , Ligantes , Masculino , Mibefradil/farmacologia , Nifedipino/farmacologia , Imagem Óptica , Ratos , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/enzimologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Espermatogênese/efeitos dos fármacos , Espermatogênese/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
9.
J Neurosci ; 38(8): 2043-2056, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29363583

RESUMO

The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo, suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection.SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been suggested to be involved in neurodegenerative disorders, including amyotrophic lateral sclerosis and Alzheimer's disease. To dissect the mechanism of Eph signal relay, we studied ephexin1 gain of function and loss of function and found ephexin1 essential for the development of limb nerves toward their muscle targets, concluding that it functions as an intermediary to relay Eph signaling in this context. Our work could thus shed new light on the molecular mechanisms controlling neuromuscular connectivity during embryonic development.


Assuntos
Orientação de Axônios/fisiologia , Axônios/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neurônios Motores/citologia , Animais , Axônios/metabolismo , Embrião de Galinha , Efrinas/metabolismo , Extremidades/inervação , Camundongos , Neurônios Motores/metabolismo , Músculo Esquelético/inervação
10.
Biochem Biophys Res Commun ; 512(3): 629-634, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30914194

RESUMO

During brain development, the expression of promyelocytic leukemia zinc finger (Plzf) in neural stem cells is precisely controlled to maintain the balance between neural stem cell self-renewal and differentiation. However, the mechanism underlying transcriptional regulation of Plzf in neural stem cell is still unclear. Herein, using P19 embryonal carcinoma cells as a model, we observed that Plzf expression was induced in the P19-derived embryonic bodies, which enrich neural stem-like cell populations, as demonstrated by the expression of neural stem cell markers, Nestin and Sox2. We then characterized the Plzf promoter and identified two E2f1 binding sites (-755/-751 and -53/-49, the transcription start site was designated as +1) are important for the activation of Plzf promoter. Finally, we found that the induction of Plzf in the neural stem-like cells derived from pluripotent P19 cells is decrease by E2f1 knockdown. Taken together, we conclude that E2f1 is an important transcription factor that regulates Plzf transcription and may involve in maintaining the self-renewal ability of neural stem cells.


Assuntos
Fator de Transcrição E2F1/metabolismo , Células-Tronco de Carcinoma Embrionário/patologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neurais/patologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/genética , Animais , Linhagem Celular Tumoral , Células-Tronco de Carcinoma Embrionário/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese , Regiões Promotoras Genéticas , Dedos de Zinco
11.
J Neuroinflammation ; 16(1): 146, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300060

RESUMO

BACKGROUND: The small population of glioma stem-like cells (GSCs) contributes to tumor initiation, malignancy, and recurrence in glioblastoma. However, the maintenance of GSC properties in the tumor microenvironment remains unclear. In glioma, non-neoplastic cells create an inflammatory environment and subsequently mediate tumor progression and maintenance. Transcriptional factor CCAAT/enhancer-binding protein delta (CEBPD) is suggested to regulate various genes responsive to inflammatory cytokines, thus prompting us to investigate its role in regulating GSCs stemness after inflammatory stimulation. METHODS: Stemness properties were analyzed by using spheroid formation. Oncomine and TCGA bioinformatic databases were used to analyze gene expression. Western blotting, quantitative real-time polymerase chain reaction, luciferase reporter assay, and chromatin immunoprecipitation assay were used to analyze proteins and gene transcript levels. The glioma tissue microarrays were used for CEBPD and PDGFA expression by immunohistochemistry staining. RESULTS: We first found that IL-1ß promotes glioma spheroid formation and is associated with elevated CEBPD expression. Using microarray analysis, platelet-derived growth factor subunit A (PDGFA) was confirmed as a CEBPD-regulated gene that mediates IL-1ß-enhanced GSCs self-renewal. Further analysis of the genomic database and tissue array revealed that the expression levels between CEBPD and PDGFA were coincident in glioma patient samples. CONCLUSION: This is the first report showing the activation of PDGFA expression by CEBPD through IL-1ß treatment and a novel CEBPD function in maintaining the self-renewal feature of GSCs.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/patologia , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Células-Tronco Neoplásicas/metabolismo
12.
J Biomed Sci ; 26(1): 77, 2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31629402

RESUMO

BACKGROUND: Intratumor subsets with tumor-initiating features in glioblastoma are likely to survive treatment. Our goal is to identify the key factor in the process by which cells develop temozolomide (TMZ) resistance. METHODS: Resistant cell lines derived from U87MG and A172 were established through long-term co-incubation of TMZ. Primary tumors obtained from patients were maintained as patient-derived xenograft for studies of tumor-initating cell (TIC) features. The cell manifestations were assessed in the gene modulated cells for relevance to drug resistance. RESULTS: Among the mitochondria-related genes in the gene expression databases, superoxide dismutase 2 (SOD2) was a significant factor in resistance and patient survival. SOD2 in the resistant cells functionally determined the cell fate by limiting TMZ-stimulated superoxide reaction and cleavage of caspase-3. Genetic inhibition of the protein led to retrieval of drug effect in mouse study. SOD2 was also associated with the TIC features, which enriched in the resistant cells. The CD133+ specific subsets in the resistant cells exhibited superior superoxide regulation and the SOD2-related caspase-3 reaction. Experiments applying SOD2 modulation showed a positive correlation between the TIC features and the protein expression. Finally, co-treatment with TMZ and the SOD inhibitor sodium diethyldithiocarbamate trihydrate in xenograft mouse models with the TMZ-resistant primary tumor resulted in lower tumor proliferation, longer survival, and less CD133, Bmi-1, and SOD2 expression. CONCLUSION: SOD2 plays crucial roles in the tumor-initiating features that are related to TMZ resistance. Inhibition of the protein is a potential therapeutic strategy that can be used to enhance the effects of chemotherapy.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Superóxido Dismutase/administração & dosagem , Temozolomida/farmacologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos/fisiopatologia , Humanos , Camundongos , Células-Tronco Neoplásicas/fisiologia
13.
Int J Mol Sci ; 20(22)2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31717924

RESUMO

Glioblastoma (GBM) is the most aggressive type of brain tumor, with strong invasiveness and a high tolerance to chemotherapy. Despite the current standard treatment combining temozolomide (TMZ) and radiotherapy, glioblastoma can be incurable due to drug resistance. The existence of glioma stem-like cells (GSCs) is considered the major reason for drug resistance. However, the mechanism of GSC enrichment remains unclear. Herein, we found that the expression and secretion of angiopoietin-like 4 protein (ANGPTL4) were clearly increased in GSCs. The overexpression of ANGPTL4 induced GSC enrichment that was characterized by polycomb complex protein BMI-1 and SRY (sex determining region Y)-box 2 (SOX2) expression, resulting in TMZ resistance in GBM. Furthermore, epidermal growth factor receptor (EGFR) phosphorylation induced 4E-BP1 phosphorylation that was required for ANGPTL4-induced GSC enrichment. In particular, ANGPTL4 induced 4E-BP1 phosphorylation by activating phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated kinase (ERK) cascades for inducing stemness. To elucidate the mechanism contributing to ANGPTL4 upregulation in GSCs, chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) revealed that specificity protein 4 (Sp4) was associated with the promoter region, -979 to -606, and the luciferase reporter assay revealed that Sp4 positively regulated activity of the ANGPTL4 promoter. Moreover, both ANGPTL4 and Sp4 were highly expressed in GBM and resulted in a poor prognosis. Taken together, Sp4-mediated ANGPTL4 upregulation induces GSC enrichment through the EGFR/AKT/4E-BP1 cascade.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Antineoplásicos Alquilantes/farmacologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Receptores ErbB/metabolismo , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida/farmacologia
14.
Dev Dyn ; 247(9): 1043-1056, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30016580

RESUMO

BACKGROUND: The development of a functioning nervous system requires precise assembly of neuronal connections, which can be achieved by the guidance of axonal growth cones to their proper targets. How axons are guided by signals transmitted to the cytoskeleton through cell surface-expressed guidance receptors remains unclear. We investigated the function of Nck2 adaptor protein as an essential guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory into the limb. RESULTS: Nck2 mRNA and protein are preferentially expressed in the medial subgroups of chick LMC neurons during axon trajectory into the limb. Nck2 loss- and gain-of-function in LMC neurons using in ovo electroporation perturb LMC axon trajectory selection demonstrating an essential role of Nck2 in motor axon guidance. We also showed that Nck2 knockdown and overexpression perturb the growth preference of LMC neurites against ephrins in vitro and Eph-mediated redirection of LMC axons in vivo. Finally, the significant changes of LMC neurite growth preference against ephrins in the context of Nck2 and α2-chimaerin loss- and gain-of-function implicated Nck2 function to modulate α2-chimaerin activity. CONCLUSIONS: Here, we showed that Nck2 is required for Eph-mediated axon trajectory selection from spinal motor neurons through possible interaction with α2-chimaerin. Developmental Dynamics 247:1043-1056, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Orientação de Axônios/fisiologia , Extremidades/fisiologia , Cones de Crescimento/fisiologia , Neurônios Motores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Embrião de Galinha , Quimerina 1/metabolismo , Efrinas/fisiologia , Extremidades/embriologia , Neuritos , Receptores da Família Eph/metabolismo
15.
Biochem Biophys Res Commun ; 493(1): 14-19, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28939040

RESUMO

It has been suggested that stress stimuli from the microenvironment maintain a subset of tumor cells with stem-like properties, including drug resistance. Here, we investigate whether Sp1, a stress-responsive factor, regulates stemness gene expression and if its inhibition sensitizes cancer cells to chemotherapy. Hydrogen peroxide- and serum deprivation-induced stresses were performed in glioblastoma (GBM) cells and patient-derived cells, and the effect of the Sp1 inhibitor mithramycin A (MA) on these stress-induced stem cells and temozolomide (TMZ)-resistant cells was evaluated. Sp1 and stemness genes were not commonly overexpressed in clinical GBM samples. However, their expression was highly induced by stress stimuli. Using MA, we demonstrated Sp1 as a critical stemness-related transcriptional factor protecting GBM cells against stress- and TMZ-induced death. Thus, Sp1 inhibition may prevent recurrence of malignant cells persisting after primary therapy.


Assuntos
Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Temozolomida , Resultado do Tratamento
17.
J Biomed Sci ; 23(1): 81, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27863490

RESUMO

BACKGROUND: Glioma stem-like cells (GSCs) are proposed to be responsible for high resistance in glioblastoma multiforme (GBM) treatment. In order to find new strategies aimed at reducing GSC stemness and improving GBM patient survival, we investigated the effects and mechanism of a histone deacetylases (HDACs) inhibitor, suberoylanilide hydroxamic acid (SAHA), since HDAC activity has been linked to cancer stem-like cell (CSC) abundance and properties. METHODS: Human GBM cell lines were plated in serum-free suspension cultures allowed for sphere forming and CSC enrichment. Subsequently, upon SAHA treatment, the stemness markers, cell proliferation, and viability of GSCs as well as cellular apoptosis and senescence were examined in order to clarify whether inhibition of GSCs occurs. RESULTS: We demonstrated that SAHA attenuated cell proliferation and diminished the expression stemness-related markers (CD133 and Bmi1) in GSCs. Furthermore, at high concentrations (more than 5 µM), SAHA triggered apoptosis of GSCs accompanied by increases in both activation of caspase 8- and caspase 9-mediated pathways. Interestingly, we found that a lower dose of SAHA (1 µM and 2.5 µM) inhibited GSCs via cell cycle arrest and induced premature senescence through p53 up-regulation and p38 activation. CONCLUSION: SAHA induces apoptosis and functions as a potent modulator of senescence via the p38-p53 pathway in GSCs. Our results provide a perspective on targeting GSCs via SAHA treatment, and suggest that SAHA could be used as a potent agent to overcome drug resistance in GBM patients.


Assuntos
Glioblastoma/tratamento farmacológico , Glioma/tratamento farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/patologia , Glioma/enzimologia , Glioma/genética , Glioma/patologia , Histona Desacetilases/biossíntese , Histona Desacetilases/genética , Humanos , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Quinases p38 Ativadas por Mitógeno/genética
18.
Biochim Biophys Acta ; 1843(6): 1135-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24530506

RESUMO

p300 is a transcription cofactor for a number of nuclear proteins. Most studies of p300 have focused on the regulation of its function, which primarily includes its role as a transcription co-factor for a number of nuclear proteins. In this study, we found that p300 was highly phosphorylated and its level was decreased during mitosis and tumorigenesis. In vitro and in vivo experiments aimed showed that cyclin-dependent kinase 1 (CDK1) and ERK1/2 phosphorylated p300 on Ser1038 and Ser2039. Mutations of Ser1038 and Ser2039 increased p300 protein stability and levels. Inhibition of p300 degradation by blocking its phosphorylation decreased the proliferation and metastasis activity of lung cancer cells, indicating that p300 acts as a tumor suppressor in lung cancer tumorigenesis. Investigation of the molecular mechanism showed that blocking p300 phosphorylation disrupted chromatin condensation and the increased the acetylation of histone H3. Analysis of cell cycle progression in HA-p300-S2A-expressing cells by flow cytometry showed that the p300 mutants arrested the cells at S-phase or delayed the mitotic entry and exit. The expression of several important oncogenes, MMP-9, vimentin, ß-catenin, N-cadherin and c-myc, was negatively regulated by p300. In conclusion, during lung tumorigenesis, a phosphorylation-mediated decrease in p300 level enhanced oncogene expression during interphase and decreased histone H3 acetylation during mitosis, which promoted lung cancer progression.


Assuntos
Adenocarcinoma/patologia , Movimento Celular , Proliferação de Células , Proteína p300 Associada a E1A/metabolismo , Neoplasias Pulmonares/patologia , Proteólise , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Western Blotting , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Células Cultivadas , Progressão da Doença , Proteína p300 Associada a E1A/genética , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Transgênicos , Mitose/fisiologia , Invasividade Neoplásica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Células Tumorais Cultivadas , Uteroglobina/genética , Uteroglobina/metabolismo , Cicatrização
19.
Biochim Biophys Acta ; 1843(12): 2843-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25173817

RESUMO

Our previous study indicated that specificity protein-1 (Sp1) is accumulated during hypoxia in an internal ribosomal entry site (IRES)-dependent manner. Herein, we found that the Sp1 was induced strongly at the protein level, but not in the mRNA level, in lung tumor tissue, indicating that translational regulation might contribute to the Sp1 accumulation during tumorigenesis. A further study showed that the translation of Sp1 was dramatically induced through an IRES-dependent pathway. RNA immunoprecipitation analysis of proteins bound to the 5'-untranslated region (5'-UTR) of Sp1 identified interacting protein - nucleolin. Knockdown of nucleolin significantly inhibited IRES-mediated translation of Sp1, suggesting that nucleolin positively facilitates Sp1 IRES activation. Further analysis of the interaction between nucleolin and the 5'-UTR of Sp1 mRNA revealed that the GAR domain was important for IRES-mediated translation of Sp1. Moreover, gefitinib, and LY294002 and MK2206 compounds inhibited IRES-mediated Sp1 translation, implying that activation of the epithelial growth factor receptor (EGFR) pathway via Akt activation triggers the IRES pathway. In conclusion, EGFR activation-mediated nucleolin phosphorylated at Thr641 and Thr707 was recruited to the 5'-UTR of Sp1 as an IRES trans-acting factor to modulate Sp1 translation during lung cancer formation.

20.
Biochim Biophys Acta ; 1843(3): 565-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24361335

RESUMO

58-kDa microspherule protein (MSP58) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. Currently, the mechanisms underlying the oncogenic effect of MSP58 are not fully understood. The human telomerase reverse transcriptase (hTERT) gene, which encodes an essential component for telomerase activity that is involved in cellular immortalization and transformation, is strictly regulated at the gene transcription level. Our previous study revealed a novel function of MSP58 in cellular senescence. Here we identify telomerase transcriptional element-interacting factor (TEIF) as a novel MSP58-interacting protein and determine the effect of MSP58 on hTERT transcription. This study thus provides evidence showing MSP58 to be a negative regulator of hTERT expression and telomerase activity. Luciferase reporter assays indicated that MSP58 could suppress the transcription ofhTERTpromoter. Additionally, stable overexpression of MSP58 protein in HT1080 and 293T cells decreased both endogenous hTERT expression and telomerase activity. Conversely, their upregulation was induced by MSP58 silencing. Chromatin immunoprecipitation assays showed that MSP58 binds to the hTERT proximal promoter. Furthermore, overexpression of MSP58 inhibited TEIF-mediated hTERT transactivation, telomerase activation, and cell proliferation promotion. The inhibitory effect of MSP58 occurred through inhibition of TEIF binding to DNA. Ultimately, the HT1080-implanted xenograft mouse model confirmed these cellular effects. Together, our findings provide new insights into both the biological function of MSP58 and the regulation of telomerase/hTERT expression.


Assuntos
Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Animais , Linhagem Celular , Núcleo Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Regiões Promotoras Genéticas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Transcrição Gênica , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA