Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Neuroeng Rehabil ; 17(1): 5, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931825

RESUMO

BACKGROUND: Locomat is a robotic exoskeleton providing guidance force and bodyweight support to facilitate intensive walking training for people with stroke. Although the Locomat has been reported to be effective in improving walking performance, the effects of training parameters on the neuromuscular control remain unclear. This study aimed to compare the muscle activities between Locomat walking and treadmill walking at a normal speed, as well as to investigate the effects of varying bodyweight support and guidance force on muscle activation patterns during Locomat walking in people with stroke. METHODS: A cross-sectional study design was employed. Participants first performed an unrestrained walking on a treadmill and then walked in the Locomat with different levels of bodyweight support (30% or 50%) and guidance force (40% or 70%) at the same speed (1.2 m/s). Surface electromyography (sEMG) of seven muscles of the affected leg was recorded. The sEMG envelope was time-normalised and averaged over gait cycles. Mean sEMG amplitude was then calculated by normalising the sEMG amplitude with respect to the peak amplitude during treadmill walking for statistical analysis. A series of Non-parametric test and post hoc analysis were performed with a significance level of 0.05. RESULTS: Fourteen participants with stroke were recruited at the Yangzhi Affiliated Rehabilitation Hospital of Tongji University (female n = 1; mean age 46.1 ± 11.1 years). Only the mean sEMG amplitude of vastus medialis oblique during Locomat walking (50% bodyweight support and 70% guidance force) was significantly lower than that during treadmill walking. Reducing both bodyweight and guidance increased muscle activity of gluteus medius and tibialis anterior. Activity of vastus medialis oblique muscle increased as bodyweight support reduced, while that of rectus femoris increased as guidance force decreased. CONCLUSIONS: The effects of Locomat on reducing muscle activity in people with stroke were minimized when walking at a normal speed. Reducing bodyweight support and guidance force increased the activity of specific muscles during Locomat walking. Effects of bodyweight support, guidance force and speed should be taken into account when developing individualized Locomat training protocols for clients with stroke.


Assuntos
Exoesqueleto Energizado , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/reabilitação , Músculo Esquelético/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Adulto , Peso Corporal , Estudos Transversais , Eletromiografia/métodos , Feminino , Transtornos Neurológicos da Marcha/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Caminhada/fisiologia
2.
J Sport Rehabil ; 29(5): 588-593, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31094638

RESUMO

CONTEXT: One of the possible mechanisms leading to secondary impingement syndrome may be the strength imbalance of shoulder rotators which is known as functional control ratio (FCR). The FCR is a ratio dividing the eccentric peak torque of the external rotators by the concentric peak torque of the internal rotators. Previous studies have focused on the reproducibility and reliability of isokinetic assessment, but there is little information on the influence of variable shoulder positions on FCR. OBJECTIVE: To compare shoulder FCR across 3 different shoulder abduction positions during isokinetic assessment. DESIGN: Cross-sectional study. SETTING: Biomechanics laboratory. PARTICIPANTS: Thirty-one healthy young university students (age 22.35 [0.95] y, weight 60.52 [9.31] kg, height 168.23 [9.47] cm). INTERVENTIONS: The concentric peak torque of internal rotators and eccentric peak torque of external rotators of right shoulder were measured on an isokinetic dynamometer. MAIN OUTCOME MEASURES: Concentric peak torque of the internal rotators and eccentric peak torque of the external rotators, measured using an isokinetic dynamometer. RESULTS: The concentric peak torque of internal rotators was significantly lower at 120° shoulder abduction compared with other positions (P < .001). The FCR was significantly higher at 120° shoulder abduction than 90° (P = .002) or 60° (P < .001) shoulder abduction because of the lower concentric peak torque. No significant difference was found in the FCR between the other 2 shoulder positions (P = .14). CONCLUSIONS: Shoulder position variations may influence FCR because of weakness of the internal rotators. Rehabilitation and injury prevention training programs should specifically focus on strengthening the internal rotators at more elevated angles of shoulder abduction.


Assuntos
Postura/fisiologia , Manguito Rotador/fisiopatologia , Articulação do Ombro/fisiologia , Ombro/fisiologia , Peso Corporal , Estudos Transversais , Feminino , Humanos , Cinética , Masculino , Debilidade Muscular/fisiopatologia , Músculos Peitorais/fisiopatologia , Reprodutibilidade dos Testes , Estatísticas não Paramétricas , Torque , Adulto Jovem
3.
J Pain Res ; 16: 3309-3318, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808462

RESUMO

Purpose: Mechanical allodynia is reportedly common during herpetic neuralgia. The purpose of this study was to establish a risk prediction model to predict the individual risk of allodynia in herpetic neuralgia. Methods: Three hundred and eighty-six patients with trunk herpetic neuralgia were divided into two regions, T2-5 and T6-11. The causality between allodynia and other factors was analyzed by a binary logistic regression model. Results: 42.2% of subjects had allodynia, 137 suffered from dynamic allodynia, and 110 with dynamic allodynia experienced local sweating. The following 5 items as predictors determined this model: local sweating (Odd Ratio = 27.57, P<0.001), lesion location (Odd Ratio=2.46, P =0.017), pain intensity (Odd Ratio=1.38, P =0.020), pain duration (Odd Ratio=0.94, P =0.006), and local scars (Odd Ratio=0.07, P<0.001). The presence and development of allodynia are associated with local sweating. The positive proportion of the Iodine-starch test between the T2-5 (50.0%) with the T6-11 (23.7%) had a statistically significant difference (χ2=5.36, P=0.021). 29.5% of patients at the T2-6 had obvious sweating, which was different from only sticky feelings at the T6-11 (70.5%, χ2=10.88, P=0.001). 19.2% of patients with residual scars and allodynia was significantly lower than 48.5% of patients without allodynia (χ2=15.28, P<0.001). Conclusion: This analysis suggests that local sweating is a concomitant symptom in dynamic allodynia, which imply the sympathetic nerves innervating the sweat glands of the skin were also involved during herpetic neuralgia. This may assist in the evaluation of dynamic allodynia and prove the role of sympathetic nerve intervention for herpetic neuralgia.

4.
Photobiomodul Photomed Laser Surg ; 40(12): 810-817, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36301306

RESUMO

Objective: This study aimed to investigate the effects of photobiomodulation (PBM), low-intensity stretching, and their combination on delayed-onset muscle soreness (DOMS) in the untrained population. The relationships between DOMS and muscle function and functional performance were also tested. Methods: Fifty-four participants were randomized into four groups. Eccentric exercise was used to induce DOMS. Each group received either no treatment, PBM, stretching or PBM combined with stretching at 24, 48, and 72 h postexercise. Pressure pain threshold (PPT), numerical rating scale (NRS), single-leg forward jump (SLFJ), and maximum isometric voluntary contraction (MIVC) were measured at baseline, 24, 48, 72, and 96 h after eccentric exercise. Between-group differences were tested using two-way repeated measures analysis of variance and the relationships between DOMS and MIVC, and SLFJ were examined using Pearson's correlation analysis. Results: The PPT at the vastus medialis and vastus lateral in the PBM combined with stretching group was significantly lower than that in control group at 72 h (p = 0.045) and 48 h (p = 0.037) postexercise. No significant between-group difference in PPT was found for the rest occasions. There was no significant between-group difference in NRS, MVIC, and SLFJ on any occasion (p ≥ 0.052). DOMS was not correlated with MIVC and SLFJ (p ≥ 0.09). Conclusions: PBM or low-intensity stretching did not affect DOMS and functional performance in untrained individuals. The combination of PBM and low-intensity stretching increased pain sensitivity and did not relieve soreness. The DOMS was not associated with either muscle function or functional performance.


Assuntos
Músculo Esquelético , Mialgia , Humanos , Mialgia/radioterapia , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Limiar da Dor/fisiologia , Exercício Físico/fisiologia
5.
J Healthc Eng ; 2021: 8866453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728036

RESUMO

OBJECTIVES: The purpose of this experimental study was to investigate the effects of nonelastic taping and dual task on ankle kinematics and kinetics in gait analysis of healthy adults. METHODS: A total of 21 healthy adults completed trials of gait analysis using a Vicon system combining ground walking with different cognitive task conditions (none, modified Stroop color/character naming, and serial-7 subtraction), with or without nonelastic taping. Ankle kinematics and kinetics including speed, ankle plantarflexion and inversion angle, ground reaction force (GRF), and stride time variability (STV) under all conditions of taping (YES or NO) and cognitive task (none, naming, and subtraction) were characterized and analyzed with repeated-measures ANOVA. RESULTS: As regards cognitive performance, the serial-7 subtraction performance under walking conditions with and without taping was significantly poorer than simple sitting condition (P < 0.001). For kinematics and kinetics, STV showed statistically significant decrease (P=0.02) when subjects underwent taping application. Vertical GRF was significantly greater under taping than barefoot (P=0.001). Ankle plantarflexion at initial contact (IC) under the dual-task walking was significantly more than under simple walking (P=0.008). CONCLUSIONS: Applications of nonelastic taping and dual task may lead to the STV, vertical GRF, ankle plantarflexion, and speed alterations because of restricted joint range of motion and changed sensorimotor neural circuit. When healthy adults performed dual-task walking, central neural resources allocation was disturbed, leading to weakened performance in both motor and cognitive tasks.


Assuntos
Articulação do Tornozelo , Caminhada , Adulto , Fenômenos Biomecânicos , Marcha , Humanos , Cinética , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA