Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.469
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(13): 2897-2910.e19, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37295417

RESUMO

Sperm motility is crucial for successful fertilization. Highly decorated doublet microtubules (DMTs) form the sperm tail skeleton, which propels the movement of spermatozoa. Using cryo-electron microscopy (cryo-EM) and artificial intelligence (AI)-based modeling, we determined the structures of mouse and human sperm DMTs and built an atomic model of the 48-nm repeat of the mouse sperm DMT. Our analysis revealed 47 DMT-associated proteins, including 45 microtubule inner proteins (MIPs). We identified 10 sperm-specific MIPs, including seven classes of Tektin5 in the lumen of the A tubule and FAM166 family members that bind the intra-tubulin interfaces. Interestingly, the human sperm DMT lacks some MIPs compared with the mouse sperm DMT. We also discovered variants in 10 distinct MIPs associated with a subtype of asthenozoospermia characterized by impaired sperm motility without evident morphological abnormalities. Our study highlights the conservation and tissue/species specificity of DMTs and expands the genetic spectrum of male infertility.


Assuntos
Inteligência Artificial , Infertilidade Masculina , Masculino , Humanos , Microscopia Crioeletrônica , Motilidade dos Espermatozoides/genética , Sêmen , Espermatozoides , Microtúbulos/metabolismo , Cauda do Espermatozoide/química , Cauda do Espermatozoide/metabolismo , Proteínas dos Microtúbulos/química , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo
2.
Plant Cell ; 36(11): 4703-4715, 2024 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-39167833

RESUMO

Autoluminescent plants have been genetically modified to express the fungal bioluminescence pathway (FBP). However, a bottleneck in precursor production has limited the brightness of these luminescent plants. Here, we demonstrate the effectiveness of utilizing a computational model to guide a multiplex five-gene-silencing strategy by an artificial microRNA array to enhance caffeic acid (CA) and hispidin levels in plants. By combining loss-of-function-directed metabolic flux with a tyrosine-derived CA pathway, we achieved substantially enhanced bioluminescence levels. We successfully generated eFBP2 plants that emit considerably brighter bioluminescence for naked-eye reading by integrating all validated DNA modules. Our analysis revealed that the luminous energy conversion efficiency of the eFBP2 plants is currently very low, suggesting that luminescence intensity can be improved in future iterations. These findings highlight the potential to enhance plant luminescence through the integration of biological and information technologies.


Assuntos
Plantas Geneticamente Modificadas , MicroRNAs/genética , MicroRNAs/metabolismo , Luminescência , Nicotiana/genética , Nicotiana/metabolismo , Medições Luminescentes/métodos , Inativação Gênica , Ácidos Cafeicos
3.
PLoS Genet ; 20(2): e1011163, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377137

RESUMO

Neonicotinoid insecticides, which target insect nicotinic acetylcholine receptors (nAChRs), have been widely and intensively used to control the whitefly, Bemisia tabaci, a highly damaging, globally distributed, crop pest. This has inevitably led to the emergence of populations with resistance to neonicotinoids. However, to date, there have been no reports of target-site resistance involving mutation of B. tabaci nAChR genes. Here we characterize the nAChR subunit gene family of B. tabaci and identify dual mutations (A58T&R79E) in one of these genes (BTß1) that confer resistance to multiple neonicotinoids. Transgenic D. melanogaster, where the native nAChR Dß1 was replaced with BTß1A58T&R79E, were significantly more resistant to neonicotinoids than flies where Dß1 were replaced with the wildtype BTß1 sequence, demonstrating the causal role of the mutations in resistance. The two mutations identified in this study replace two amino acids that are highly conserved in >200 insect species. Three-dimensional modelling suggests a molecular mechanism for this resistance, whereby A58T forms a hydrogen bond with the R79E side chain, which positions its negatively-charged carboxylate group to electrostatically repulse a neonicotinoid at the orthosteric site. Together these findings describe the first case of target-site resistance to neonicotinoids in B. tabaci and provide insight into the molecular determinants of neonicotinoid binding and selectivity.


Assuntos
Hemípteros , Inseticidas , Receptores Nicotínicos , Animais , Receptores Nicotínicos/genética , Inseticidas/farmacologia , Hemípteros/genética , Drosophila melanogaster , Neonicotinoides/farmacologia , Mutação
4.
PLoS Pathog ; 20(8): e1012437, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102432

RESUMO

The ability of Staphylococcus aureus (S. aureus) to survive within macrophages is a critical strategy for immune evasion, contributing to the pathogenesis and progression of osteomyelitis. However, the underlying mechanisms remain poorly characterized. This study discovered that inhibiting the MEK1/2 pathway reduced bacterial load and mitigated bone destruction in a mouse model of S. aureus osteomyelitis. Histological staining revealed increased phosphorylated MEK1/2 levels in bone marrow macrophages surrounding abscess in the mouse model of S. aureus osteomyelitis. Activation of MEK1/2 pathway and its roles in impairing macrophage bactericidal function were confirmed in primary mouse bone marrow-derived macrophages (BMDMs). Transcriptome analysis and in vitro experiments demonstrated that S. aureus activates the MEK1/2 pathway through EGFR signaling. Moreover, we found that excessive activation of EGFR-MEK1/2 cascade downregulates mitochondrial reactive oxygen species (mtROS) levels by suppressing Chek2 expression, thereby impairing macrophage bactericidal function. Furthermore, pharmacological inhibition of EGFR signaling prevented upregulation of phosphorylated MEK1/2 and restored Chek2 expression in macrophages, significantly enhancing S. aureus clearance and improving bone microstructure in vivo. These findings highlight the critical role of the EGFR-MEK1/2 cascade in host immune defense against S. aureus, suggesting that S. aureus may reduce mtROS levels by overactivating the EGFR-MEK1/2 cascade, thereby suppressing macrophage bactericidal function. Therefore, combining EGFR-MEK1/2 pathway blockade with antibiotics could represent an effective therapeutic approach for the treatment of S. aureus osteomyelitis.


Assuntos
Receptores ErbB , MAP Quinase Quinase 1 , Macrófagos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Osteomielite/microbiologia , Osteomielite/imunologia , Osteomielite/metabolismo , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Camundongos , Staphylococcus aureus/imunologia , Receptores ErbB/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais
5.
Nature ; 580(7803): 386-390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296174

RESUMO

The aetiology of inflammatory bowel disease (IBD) is a multifactorial interplay between heredity and environment1,2. Here we report that deficiency in SETDB1, a histone methyltransferase that mediates the trimethylation of histone H3 at lysine 9, participates in the pathogenesis of IBD. We found that levels of SETDB1 are decreased in patients with IBD, and that mice with reduced SETDB1 in intestinal stem cells developed spontaneous terminal ileitis and colitis. SETDB1 safeguards genome stability3, and the loss of SETDB1 in intestinal stem cells released repression of endogenous retroviruses (retrovirus-like elements with long repeats that, in humans, comprise approximately 8% of the genome). Excessive viral mimicry generated by motivated endogenous retroviruses triggered Z-DNA-binding protein 1 (ZBP1)-dependent necroptosis, which irreversibly disrupted homeostasis of the epithelial barrier and promoted bowel inflammation. Genome instability, reactive endogenous retroviruses, upregulation of ZBP1 and necroptosis were all seen in patients with IBD. Pharmaceutical inhibition of RIP3 showed a curative effect in SETDB1-deficient mice, which suggests that targeting necroptosis of intestinal stem cells may represent an approach for the treatment of severe IBD.


Assuntos
Instabilidade Genômica , Histona-Lisina N-Metiltransferase/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Necroptose , Células-Tronco/metabolismo , Animais , Histona-Lisina N-Metiltransferase/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Camundongos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Células-Tronco/citologia
6.
J Biol Chem ; 300(3): 105667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272228

RESUMO

The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Doença de Parkinson/metabolismo , Separação de Fases , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Fatores de Transcrição , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Células HeLa , Eletricidade Estática
7.
Plant J ; 119(2): 998-1013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761113

RESUMO

The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.


Assuntos
Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Pólen/genética , Pólen/fisiologia , Pólen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinação/fisiologia , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Mutação , Gotículas Lipídicas/metabolismo
8.
J Biol Chem ; 299(8): 105055, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37454738

RESUMO

Post-translational modifications including protein ubiquitination regulate a plethora of cellular processes in distinct manners. RNA N6-methyladenosine is the most abundant post-transcriptional modification on mammalian mRNAs and plays important roles in various physiological and pathological conditions including hematologic malignancies. We previously determined that the RNA N6-methyladenosine eraser ALKBH5 is necessary for the maintenance of acute myeloid leukemia (AML) stem cell function, but the post-translational modifications involved in ALKBH5 regulation remain elusive. Here, we show that deubiquitinase ubiquitin-specific peptidase 9X (USP9X) stabilizes ALKBH5 and promotes AML cell survival. Through the use of mass spectrometry as an unbiased approach, we identify USP9X and confirm that it directly binds to ALKBH5. USP9X stabilizes ALKBH5 by removing the K48-linked polyubiquitin chain at K57. Using human myeloid leukemia cells and a murine AML model, we find that genetic knockdown or pharmaceutical inhibition of USP9X inhibits leukemia cell proliferation, induces apoptosis, and delays AML development. Ectopic expression of ALKBH5 partially mediates the function of USP9X in AML. Overall, this study uncovers deubiquitinase USP9X as a key for stabilizing ALKBH5 expression and reveals the important role of USP9X in AML, which provides a promising therapeutic strategy for AML treatment in the clinic.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Leucemia Mieloide Aguda , Ubiquitina Tiolesterase , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Leucemia Mieloide Aguda/genética , RNA , Ubiquitina Tiolesterase/genética , Ubiquitinação
9.
Plant J ; 116(6): 1842-1855, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37665679

RESUMO

Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.


Assuntos
Flores , Transcriptoma , Humanos , Transcriptoma/genética , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , RNA-Seq , Regulação da Expressão Gênica de Plantas/genética
10.
J Am Chem Soc ; 146(39): 27022-27029, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39292646

RESUMO

Chemical synapse completes the signaling through neurotransmitter-mediated ion flux, the emulation of which has been a long-standing obstacle in neuromorphic exploration. Here, we report metal-organic framework (MOF) nanofluidic synapses in which conjugated MOFs with abundant ionic storage sites underlie the ionic hysteresis and simultaneously serve as catalase mimetics that sensitively respond to neurotransmitter glutamate (Glu). Various neurosynaptic patterns with adaptable weights are realized via Glu-mediated chemical/ionic coupling. In particular, nonlinear Hebbian and anti-Hebbian learning in millisecond time ranges are achieved, akin to those of chemical synapses. Reversible biochemical in-memory encoding via enzymatic Glu clearance is also accomplished. Such results are prerequisites for highly bionic electrolytic computers.


Assuntos
Ácido Glutâmico , Estruturas Metalorgânicas , Sinapses , Estruturas Metalorgânicas/química , Ácido Glutâmico/química , Sinapses/química , Sinapses/metabolismo , Nanotecnologia/métodos , Catalase/química , Catalase/metabolismo
11.
J Am Chem Soc ; 146(9): 6345-6351, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377535

RESUMO

Selenium (Se) discovered in 1817 belongs to the family of chalcogens. Surprisingly, despite the long history of over two centuries and the chemical simplicity of Se, the structure of amorphous Se (a-Se) remains controversial to date regarding the dominance of chains versus rings. Here, we find that vapor-deposited a-Se is composed of disordered rings rather than chains in melt-quenched a-Se. We further reveal that the main origin of this controversy is the facile transition of rings to chains arising from the inherent instability of rings. This transition can be inadvertently triggered by certain characterization techniques themselves containing above-bandgap illumination (above 2.1 eV) or heating (above 50 °C). We finally build a roadmap for obtaining accurate Raman spectra by using above-bandgap excitation lasers with low photon flux (below 1017 phs m-2 s-1) and below-bandgap excitation lasers measured at low temperatures (below -40 °C) to minimize the photoexcitation- and heat-induced ring-to-chain transitions.

12.
J Am Chem Soc ; 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39446027

RESUMO

Spiro-OMeTAD hole transport materials typically exhibit an amorphous state in perovskite solar cells. However, the lack of structural ordering leads to weak intermolecular interaction, inferior carrier transfer, and poor stability in devices. Herein, we developed a π-conjugation-induced short-range ordering strategy to modulate the stacking order of spiro-OMeTAD during film formation. A clear molecular ordering at the nanoscale is observed, which enhances intermolecular π-π stacking in spiro-OMeTAD and enables effective carrier extraction and favorable energy level alignment. The nanoscale-ordered spiro-OMeTAD allows the achievement of perovskite solar cells with a champion efficiency of 25.37%, surpassing devices utilizing amorphous spiro-OMeTAD (23.52%). The unencapsulated device demonstrates enhanced operational stability by retaining 98% of its initial efficiency under continuous 1 sun equivalent illumination at 60 °C for 840 h. This work establishes a significant and valid modulation concept for the stacking order of organic transport materials, paving the way for the development of efficient and stable perovskite solar cells.

13.
J Am Chem Soc ; 146(33): 23625-23632, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39120638

RESUMO

The interfacial species-built local environments on Cu surfaces impact the CO2 electroreduction process significantly in producing value-added multicarbon (C2+) products. However, intricate interfacial dynamics leads to a challenge in understanding how these species affect the process. Herein, with ab initio molecular dynamics (AIMD) and finite element method (FEM) simulations, we reveal that the highly concentrated interfacial species, including the *CO, hydroxide, and K+, could synergistically promote the C-C coupling on the one-dimensional (1D) porous hollow structure regulated interfacial environment. The Cu-Ag tandem catalyst was then synthesized with the as-designed structure, exhibiting a high C2+ Faradaic efficiency of 76.0% with a partial current density of 380.0 mA cm-2 in near-neutral electrolytes. Furthermore, in situ Raman spectra validate that the 1D porous structure regulates the concentration of interfacial CO intermediates and ions to increase *CO coverage, local pH value, and ionic field, promoting the CO2-to-C2+ activity. These results provide insights into the design of practical ECR electrocatalysts by regulating interfacial species-induced local environments.

14.
J Am Chem Soc ; 146(40): 27713-27724, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39324482

RESUMO

The activity of the electrocatalytic CO2 reduction reaction (CO2RR) is substantially affected by alkali metal cations (AM+) in electrolytes, yet the underlying mechanism is still controversial. Here, we employed electrochemical scanning tunneling microscopy and in situ observed Au(111) surface roughening in AM+ electrolytes during cathodic polarization. The roughened surface is highly active for catalyzing the CO2RR due to the formation of surface low-coordinated Au atoms. The critical potential for surface roughening follows the order Cs+ > Rb+ > K+ > Na+ > Li+, and the surface proportion of roughened area decreases in the order of Cs+ > Rb+ > K+ > Na+ > Li+. Electrochemical CO2RR measurements demonstrate that the catalytic activity strongly correlates with the surface roughness. Furthermore, we found that AM+ is critical for surface roughening to occur. The results unveil the unrecognized effect of AM+ on the surface structural evolution and elucidate that the AM+-induced formation of surface high-activity sites contributes to the enhanced CO2RR in large AM+ electrolytes.

15.
Anal Chem ; 96(5): 2135-2141, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252409

RESUMO

A facile route for exponential magnification of transconductance (gm) in an organic photoelectrochemical transistor (OPECT) is still lacking. Herein, photoresponsive hydrogen-bonded organic frameworks (PR-HOFs) have been shown to be efficient for gm magnification in a typical poly(ethylene dioxythiophene):poly(styrenesulfonate) OPECT. Specifically, 450 nm light stimulation of 1,3,6,8-tetrakis (p-benzoic acid) pyrene (H4TBAPy)-based HOF could efficiently modulate the device characteristics, leading to the considerable gm magnification over 78 times from 0.114 to 8.96 mS at zero Vg. In linkage with a DNA nanomachine-assisted steric hindrance amplification strategy, the system was then interfaced with the microRNA-triggered structural DNA evolution toward the sensitive detection of a model target microRNA down to 0.1 fM. This study first reveals HOFs-enabled efficient gm magnification in organic electronics and its application for sensitive biomolecular detection.


Assuntos
Ácido Benzoico , MicroRNAs , Hidrogênio , Polietileno , DNA
16.
Small ; 20(22): e2308851, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112252

RESUMO

Vanadium oxides have aroused attention as cathode materials in aqueous zinc-ion batteries (AZIBs) due to their low cost and high safety. However, low ion diffusion and vanadium dissolution often lead to capacity decay and deteriorating stability during cycling. Herein, vanadium dioxides (VO2) nanobelts are coated with a single-atom cobalt dispersed N-doped carbon (Co-N-C) layer via a facile calcination strategy to form Co-N-C layer coated VO2 nanobelts (VO2@Co-N-C NBs) for cathodes in AZIBs. Various in-/ex situ characterizations demonstrate the interfaces between VO2 layers and Co-N-C layers can protect the VO2 NBs from collapsing, increase ion diffusion, and enhance the Zn2+ storage performance. Additional density functional theory (DFT) simulations demonstrate that Co─O─V bonds between VO2 and Co-N-C layers can enhance interfacial Zn2+ storage. Moreover, the VO2@Co-N-C NBs provided an ultrahigh capacity (418.7 mAh g-1 at 1 A g-1), outstanding long-term stability (over 8000 cycles at 20 A g-1), and superior rate performance.

17.
J Transl Med ; 22(1): 989, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39487546

RESUMO

BACKGROUND: Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central nervous system. The contribution of peripheral abnormalities to the disease's pathogenesis is not well understood. METHODS: To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. We then analyzed the peripheral changes of NMOSD, and features related to NMOSD's disease severity. Furthermore, an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha (FAP). RESULTS: Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This signature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolipids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with disease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression. CONCLUSIONS: Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identification and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.


Assuntos
Biomarcadores , Neuromielite Óptica , Humanos , Neuromielite Óptica/sangue , Biomarcadores/sangue , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Estudos de Casos e Controles , Citocinas/sangue , Metabolômica , Proteínas de Membrana , Endopeptidases
18.
BMC Microbiol ; 24(1): 206, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858614

RESUMO

OBJECTIVE: This study aims to examine the impact of PE/PPE gene mutations on the transmission of Mycobacterium tuberculosis (M. tuberculosis) in China. METHODS: We collected the whole genome sequencing (WGS) data of 3202 M. tuberculosis isolates in China from 2007 to 2018 and investigated the clustering of strains from different lineages. To evaluate the potential role of PE/PPE gene mutations in the dissemination of the pathogen, we employed homoplastic analysis to detect homoplastic single nucleotide polymorphisms (SNPs) within these gene regions. Subsequently, logistic regression analysis was conducted to analyze the statistical association. RESULTS: Based on nationwide M. tuberculosis WGS data, it has been observed that the majority of the M. tuberculosis burden in China is caused by lineage 2 strains, followed by lineage 4. Lineage 2 exhibited a higher number of transmission clusters, totaling 446 clusters, of which 77 were cross-regional clusters. Conversely, there were only 52 transmission clusters in lineage 4, of which 9 were cross-regional clusters. In the analysis of lineage 2 isolates, regression results showed that 4 specific gene mutations, PE4 (position 190,394; c.46G > A), PE_PGRS10 (839,194; c.744 A > G), PE16 (1,607,005; c.620T > G) and PE_PGRS44 (2,921,883; c.333 C > A), were significantly associated with the transmission of M. tuberculosis. Mutations of PE_PGRS10 (839,334; c.884 A > G), PE_PGRS11 (847,613; c.1455G > C), PE_PGRS47 (3,054,724; c.811 A > G) and PPE66 (4,189,930; c.303G > C) exhibited significant associations with the cross-regional clusters. A total of 13 mutation positions showed a positive correlation with clustering size, indicating a positive association. For lineage 4 strains, no mutations were found to enhance transmission, but 2 mutation sites were identified as risk factors for cross-regional clusters. These included PE_PGRS4 (338,100; c.974 A > G) and PPE13 (976,897; c.1307 A > C). CONCLUSION: Our results indicate that some PE/PPE gene mutations can increase the risk of M. tuberculosis transmission, which might provide a basis for controlling the spread of tuberculosis.


Assuntos
Mutação , Mycobacterium tuberculosis , Polimorfismo de Nucleotídeo Único , Tuberculose , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/isolamento & purificação , China/epidemiologia , Humanos , Tuberculose/transmissão , Tuberculose/microbiologia , Tuberculose/epidemiologia , Genoma Bacteriano , Feminino , Masculino , Proteínas de Bactérias/genética , Adulto
19.
Plant Physiol ; 192(1): 154-169, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36721922

RESUMO

Flowering transition is tightly coordinated by complex gene regulatory networks, in which AGAMOUS-LIKE 16 (AGL16) plays important roles. Here, we identified the molecular function and binding properties of AGL16 and demonstrated its partial dependency on the SUPPRESSOR OF CONSTANS 1 (SOC1) function in regulating flowering. AGL16 bound to promoters of more than 2,000 genes via CArG-box motifs with high similarity to that of SOC1 in Arabidopsis (Arabidopsis thaliana). Approximately 70 flowering genes involved in multiple pathways were potential targets of AGL16. AGL16 formed a protein complex with SOC1 and shared a common set of targets. Intriguingly, only a limited number of genes were differentially expressed in the agl16-1 loss-of-function mutant. However, in the soc1-2 knockout background, AGL16 repressed and activated the expression of 375 and 182 genes, respectively, with more than a quarter bound by AGL16. Corroborating these findings, AGL16 repressed the flowering time more strongly in soc1-2 than in the Col-0 background. These data identify a partial inter-dependency between AGL16 and SOC1 in regulating genome-wide gene expression and flowering time, while AGL16 provides a feedback regulation on SOC1 expression. Our study sheds light on the complex background dependency of AGL16 in flowering regulation, thus providing additional insights into the molecular coordination of development and environmental adaptation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica de Plantas , Flores
20.
Plant Physiol ; 193(1): 627-642, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37233029

RESUMO

Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.


Assuntos
Arabidopsis , Flavonoides , Plantas , Pólen/genética , Arabidopsis/genética , Flavonóis , Esporos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA