Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
2.
Gastroenterology ; 165(3): 629-646, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37247644

RESUMO

BACKGROUND & AIMS: Hyperactivation of ribosome biogenesis leads to hepatocyte transformation and plays pivotal roles in hepatocellular carcinoma (HCC) development. We aimed to identify critical ribosome biogenesis proteins that are overexpressed and crucial in HCC progression. METHODS: HEAT repeat containing 1 (HEATR1) expression and clinical correlations were analyzed using The Cancer Genome Atlas and Gene Expression Omnibus databases and further evaluated by immunohistochemical analysis of an HCC tissue microarray. Gene expression was knocked down by small interfering RNA. HEATR1-knockdown cells were subjected to viability, cell cycle, and apoptosis assays and used to establish subcutaneous and orthotopic tumor models. Chromatin immunoprecipitation and quantitative polymerase chain reaction were performed to detect the association of candidate proteins with specific DNA sequences. Endogenous coimmunoprecipitation combined with mass spectrometry was used to identify protein interactions. We performed immunoblot and immunofluorescence assays to detect and localize proteins in cells. The nucleolus ultrastructure was detected by transmission electron microscopy. Click-iT (Thermo Fisher Scientific) RNA imaging and puromycin incorporation assays were used to measure nascent ribosomal RNA and protein synthesis, respectively. Proteasome activity, 20S proteasome foci formation, and protein stability were evaluated in HEATR1-knockdown HCC cells. RESULTS: HEATR1 was the most up-regulated gene in a set of ribosome biogenesis mediators in HCC samples. High expression of HEATR1 was associated with poor survival and malignant clinicopathologic features in patients with HCC and contributed to HCC growth in vitro and in vivo. HEATR1 expression was regulated by the transcription factor specificity protein 1, which can be activated by insulin-like growth factor 1-mammalian target of rapamycin complex 1 signaling in HCC cells. HEATR1 localized predominantly in the nucleolus, bound to ribosomal DNA, and was associated with RNA polymerase I transcription/processing factors. Knockdown of HEATR1 disrupted ribosomal RNA biogenesis and impaired nascent protein synthesis, leading to reduced cytoplasmic proteasome activity and inhibitory-κB/nuclear factor-κB signaling. Moreover, HEATR1 knockdown induced nucleolar stress with increased nuclear proteasome activity and inactivation of the nucleophosmin 1-MYC axis. CONCLUSIONS: Our study revealed that HEATR1 is up-regulated by insulin-like growth factor 1-mammalian target of rapamycin complex 1-specificity protein 1 signaling in HCC and functions as a crucial regulator of ribosome biogenesis and proteome homeostasis to promote HCC development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Homeostase , Temperatura Alta , Fator de Crescimento Insulin-Like I/genética , Neoplasias Hepáticas/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteoma/metabolismo , Ribossomos/metabolismo , Ribossomos/patologia , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
3.
J Cell Sci ; 134(11)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34085694

RESUMO

The classical neurotransmitter serotonin or 5-hydroxytryptamine (5-HT), synthesized from tryptophan, can be produced both centrally and peripherally. Through binding to functionally distinct receptors, serotonin is profoundly implicated in a number of fundamental physiological processes and pathogenic conditions. Recently, serotonin has been found covalently incorporated into proteins, a newly identified post-translational modification termed serotonylation. Transglutaminases (TGMs), especially TGM2, are responsible for catalyzing the transamidation reaction by transferring serotonin to the glutamine residues of target proteins. Small GTPases, extracellular matrix protein fibronectin, cytoskeletal proteins and histones are the most reported substrates for serotonylation, and their functions are triggered by this post-translational modification. This Review highlights the roles of serotonylation in physiology and diseases and provides perspectives for pharmacological interventions to ameliorate serotonylation for disease treatment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Transglutaminases , Glutamina , Processamento de Proteína Pós-Traducional , Serotonina/metabolismo , Transglutaminases/genética
4.
Mol Ther ; 30(10): 3284-3299, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35765243

RESUMO

Existing evidence indicates that gut fungal dysbiosis might play a key role in the pathogenesis of colorectal cancer (CRC). We sought to explore whether reversing the fungal dysbiosis by terbinafine, an approved antifungal drug, might inhibit the development of CRC. A population-based study from Sweden identified a total of 185 patients who received terbinafine after their CRC diagnosis and found that they had a decreased risk of death (hazard ratio = 0.50) and metastasis (hazard ratio = 0.44) compared with patients without terbinafine administration. In multiple mouse models of CRC, administration of terbinafine decreased the fungal load, the fungus-induced myeloid-derived suppressor cell (MDSC) expansion, and the tumor burden. Fecal microbiota transplantation from mice without terbinafine treatment reversed MDSC infiltration and partially restored tumor proliferation. Mechanistically, terbinafine directly impaired tumor cell proliferation by reducing the ratio of nicotinamide adenine dinucleotide phosphate (NADP+) to reduced form of nicotinamide adenine dinucleotide phosphate (NADPH), suppressing the activity of glucose-6-phosphate dehydrogenase (G6PD), resulting in nucleotide synthesis disruption, deoxyribonucleotide (dNTP) starvation, and cell-cycle arrest. Collectively, terbinafine can inhibit CRC by reversing fungal dysbiosis, suppressing tumor cell proliferation, inhibiting fungus-induced MDSC infiltration, and restoring antitumor immune response.


Assuntos
Neoplasias Colorretais , Terbinafina , Animais , Antifúngicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Desoxirribonucleotídeos , Disbiose , Glucosefosfato Desidrogenase , Camundongos , NADP , Terbinafina/farmacologia
5.
Gut ; 68(11): 1994-2006, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30826748

RESUMO

BACKGROUND AND AIMS: Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death worldwide. Neurotransmitter-initiated signalling pathway is profoundly implicated in tumour initiation and progression. Here, we investigated whether dysregulated neurotransmitter receptors play a role during pancreatic tumourigenesis. METHODS: The Cancer Genome Atlas and Gene Expression Omnibus datasets were used to identify differentially expressed neurotransmitter receptors. The expression pattern of gamma-aminobutyric acid type A receptor pi subunit (GABRP) in human and mouse PDAC tissues and cells was studied by immunohistochemistry and western blot analysis. The in vivo implications of GABRP in PDAC were tested by subcutaneous xenograft model and lung metastasis model. Bioinformatics analysis, transwell experiment and orthotopic xenograft model were used to identify the in vitro and in vivo effects of GABRP on macrophages in PDAC. ELISA, co-immunoprecipitation, proximity ligation assay, electrophysiology, promoter luciferase activity and quantitative real-time PCR analyses were used to identify molecular mechanism. RESULTS: GABRP expression was remarkably increased in PDAC tissues and associated with poor prognosis, contributed to tumour growth and metastasis. GABRP was correlated with macrophage infiltration in PDAC and pharmacological deletion of macrophages largely abrogated the oncogenic functions of GABRP in PDAC. Mechanistically, GABRP interacted with KCNN4 to induce Ca2+ entry, which leads to activation of nuclear factor κB signalling and ultimately facilitates macrophage infiltration by inducing CXCL5 and CCL20 expression. CONCLUSIONS: Overexpressed GABRP exhibits an immunomodulatory role in PDAC in a neurotransmitter-independent manner. Targeting GABRP or its interaction partner KCNN4 may be an effective therapeutic strategy for PDAC.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Macrófagos/fisiologia , Camundongos , Transdução de Sinais/fisiologia
7.
Biochem Biophys Res Commun ; 499(3): 584-593, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29621546

RESUMO

Pancreatic Ductal Adenocarcinoma (PADC) metastasis is the leading cause of morality of this severe malignant tumor. Proteases are key players in the degradation of extracellular matrix which promotes the cascade of tumor metastasis. As a kind of serine proteases, the kallikrein family performs vital function on the cancer proteolysis scene, which have been proved in diverse malignant tumors. However, the specific member of kallikrein family and its function in PDAC remain unexplored. In this study, by data mining of GEO datasets, we have identified KLK10 is upregulated gene in PDAC. We found that KLK10 was significantly overexpressed in tissues of pancreatic intraepithelial neoplasia (PanIN) and PDAC from Pdx1-Cre; LSL-KrasG12D/+ mice (KC) and Pdx1-Cre; LSL-KrasG12D/+; LSL-Trp53R172H/+ mice (KPC) by immunohistochemical analysis. Moreover, KLK10 is extremely elevated in the PDAC tissues, especially that from the PDAC patients with lymphatic and distant metastasis. Aberrant KLK10 expression is significantly correlated with poor prognosis and shorter survival by univariable and multivariable analysis. Functionally, knockdown of KLK10 observably inhibits invasion and metastatic phenotype of PDAC cells in vitro and metastasis in vivo. In addition, blockade of KLK10 attenuates epithelial-mesenchymal transition and activation of FAK-SRC-ERK signaling, which explains the mechanism of KLK10 in promoting metastasis. Collectively, KLK10 should be considered as a promising biomarker for diagnosis and potential target for therapy in PDAC.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Transição Epitelial-Mesenquimal/genética , Calicreínas/genética , Neoplasias Pancreáticas/genética , Regulação para Cima/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Calicreínas/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Fenótipo , Prognóstico , Transdução de Sinais , Quinases da Família src/metabolismo , Neoplasias Pancreáticas
8.
Cell Rep ; 43(8): 114633, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39154343

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) features substantial matrix stiffening and reprogrammed glucose metabolism, particularly the Warburg effect. However, the complex interplay between these traits and their impact on tumor advancement remains inadequately explored. Here, we integrated clinical, cellular, and bioinformatics approaches to explore the connection between matrix stiffness and the Warburg effect in PDAC, identifying CLIC1 as a key mediator. Elevated CLIC1 expression, induced by matrix stiffness through Wnt/ß-catenin/TCF4 signaling, signifies poorer prognostic outcomes in PDAC. Functionally, CLIC1 serves as a catalyst for glycolytic metabolism, propelling tumor proliferation. Mechanistically, CLIC1 fortifies HIF1α stability by curbing hydroxylation via reactive oxygen species (ROS). Collectively, PDAC cells elevate CLIC1 levels in a matrix-stiffness-responsive manner, bolstering the Warburg effect to drive tumor growth via ROS/HIF1α signaling. Our insights highlight opportunities for targeted therapies that concurrently address matrix properties and metabolic rewiring, with CLIC1 emerging as a promising intervention point.


Assuntos
Carcinoma Ductal Pancreático , Proliferação de Células , Canais de Cloreto , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pancreáticas , Efeito Warburg em Oncologia , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Linhagem Celular Tumoral , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Espécies Reativas de Oxigênio/metabolismo , Glicólise , Camundongos Nus , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica
9.
Cell Rep ; 43(10): 114818, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39388353

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) have shown promise in cancer therapy, particularly for hepatocellular carcinoma (HCC), but their molecular targets and mechanisms remain unclear. Here, we show that SSRIs exhibit significant anti-HCC effects independent of their classical target, the serotonin reuptake transporter (SERT). Using global inverse gene expression profiling, drug affinity responsive target stability assays, and in silico molecular docking, we demonstrate that citalopram targets glucose transporter 1 (GLUT1), resulting in reduced glycolytic flux. A mutant GLUT1 variant at the citalopram binding site (E380) diminishes the drug's inhibitory effects on the Warburg effect and tumor growth. In preclinical models, citalopram dampens the growth of GLUT1high liver tumors and displays a synergistic effect with anti-PD-1 therapy. Retrospective analysis reveals that SSRI use correlates with a lower risk of metastasis among patients with HCC. Our study describes a role for SSRIs in cancer metabolism, establishing a rationale for their repurposing as potential anti-cancer drugs for HCC.


Assuntos
Carcinoma Hepatocelular , Citalopram , Transportador de Glucose Tipo 1 , Neoplasias Hepáticas , Inibidores Seletivos de Recaptação de Serotonina , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Citalopram/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Animais , Camundongos , Linhagem Celular Tumoral , Efeito Warburg em Oncologia/efeitos dos fármacos , Camundongos Nus , Proliferação de Células/efeitos dos fármacos , Antidepressivos/farmacologia , Masculino
10.
Matrix Biol ; 117: 31-45, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36849082

RESUMO

The extracellular matrix (ECM), as an important component of the tumor microenvironment, exerts various roles in tumor formation. Mitochondrial dynamic disorder is closely implicated in tumorigenesis, including hyperfission in HCC. We aimed to determine the influence of the ECM-related protein CCBE1 on mitochondrial dynamics in HCC. Here, we found that CCBE1 was capable of promoting mitochondrial fusion in HCC. Initially, CCBE1 expression was found to be significantly downregulated in tumors compared with nontumor tissues, which resulted from hypermethylation of the CCBE1 promoter in HCC. Furthermore, CCBE1 overexpression or treatment with recombinant CCBE1 protein dramatically inhibited HCC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, CCBE1 functioned as an inhibitor of mitochondrial fission by preventing the location of DRP1 on mitochondria through inhibiting its phosphorylation at Ser616 by directly binding with TGFßR2 to inhibit TGFß signaling activity. In addition, a higher percentage of specimens with higher DRP1 phosphorylation was present in patients with lower CCBE1 expression than in patients with higher CCBE1 expression, which further confirmed the inhibitory effect of CCBE1 on DRP1 phosphorylation at Ser616. Collectively, our study highlights the crucial roles of CCBE1 in mitochondrial homeostasis, suggesting strong evidence for this process as a potential therapeutic strategy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dinâmica Mitocondrial , Neoplasias Hepáticas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proliferação de Células , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Supressoras de Tumor
11.
Cell Oncol (Dordr) ; 46(5): 1429-1444, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37249744

RESUMO

OBJECTIVE: Previous studies have indicated that neurotransmitters play important roles in the occurrence and development of gastric cancer. MAOA is an important catecholamine neurotransmitter-degrading enzyme involved in the degradation of norepinephrine, epinephrine and serotonin. To find a potential therapeutic target for the treatment of gastric cancer, the biological functions of MAOA and the underlying mechanism in gastric cancer need to be explored. METHODS: The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets, Kaplan‒Meier (KM) plotter were used to identify the differentially expressed genes, which mainly involved the degradation and synthesis enzymes of neurotransmitters in gastric cancer. We also investigated the expression pattern of MAOA in human and mouse tissues and cell lines by immunohistochemistry and Western blotting analysis. Western blotting, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and a Seahorse experiment were used to identify the molecular mechanism of cancer cell glycolysis. MAOA expression and patient survival were analysed in the Ren Ji cohort, and univariate and multivariate analyses were performed based on the clinicopathological characteristics of the above samples. RESULTS: MAOA expression was significantly downregulated in gastric cancer tissue and associated with poor patient prognosis. Moreover, the expression level of MAOA in gastric cancer tissue had a close negative correlation with the SUXmax value of PET-CT in patients. MAOA suppressed tumour growth and glycolysis and promoted cancer cell apoptosis. We also reported that MAOA can interact with NDRG1 and regulate glycolysis through suppression of the PI3K/Akt/mTOR pathway. MAOA expression may serve as an independent prognostic factor in gastric cancer patients. CONCLUSIONS: MAOA attenuated glycolysis and inhibited the progression of gastric cancer through the PI3K/Akt/mTOR pathway. Loss of function or downregulation of MAOA can facilitate gastric cancer progression. Overexpression of MAOA and inhibition of the PI3K/Akt/mTOR pathway may provide a potential method for gastric cancer treatment in clinical therapeutic regimens.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias Gástricas , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neurotransmissores/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Cell Oncol (Dordr) ; 46(4): 953-967, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36939950

RESUMO

PURPOSE: Available evidence indicates that dipyridamole enhances the anti-thrombotic effects of aspirin for the prevention of secondary strokes. Aspirin is a well-known non-steroid anti-inflammatory drug. This anti-inflammatory property has turned aspirin into a potential drug for inflammation-related cancers such as colorectal cancer (CRC). Here, we aimed to explore whether the anti-cancer effect of aspirin against CRC could be improved by combined administration with dipyridamole. METHODS: Population-based clinical data analysis was conducted to assess a possible therapeutic effect of combined dipyridamole and aspirin treatment in inhibiting CRC compared with either monotherapy. This therapeutic effect was further verified in different CRC mouse models, i.e. an orthotopic xenograft mouse model, an AOM/DSS mouse model, an Apcmin/+ mouse model and a patient derived xenograft (PDX) mouse model. The in vitro effects of the drugs on CRC cells were tested using CCK8 and flow cytometry assays. RNA-Seq, Western blotting, qRT-PCR and flow cytometry were used to identify the underlying molecular mechanisms. RESULTS: We found that dipyridamole combined with aspirin had a better inhibitory effect on CRC than either monotherapy alone. The enhanced anti-cancer effect of the combined use of dipyridamole with aspirin was found to rely on the induction of an overwhelmed endoplasmic reticulum (ER) stress and subsequent pro-apoptotic unfolded protein response (UPR), which was different from the anti-platelet effect. CONCLUSIONS: Our data indicate that the anti-cancer effect of aspirin against CRC may be enhanced by combined administration with dipyridamole. In case further clinical studies confirm our findings, these may be repurposed as adjuvant agents.


Assuntos
Aspirina , Neoplasias Colorretais , Humanos , Animais , Camundongos , Aspirina/farmacologia , Aspirina/uso terapêutico , Dipiridamol/farmacologia , Dipiridamol/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Anti-Inflamatórios/uso terapêutico , Resposta a Proteínas não Dobradas , Apoptose
13.
Nat Commun ; 14(1): 861, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792623

RESUMO

To explore the mechanism of coadaptation and the potential drivers of pancreatic ductal adenocarcinoma (PDAC) metastasis to the liver, we study key molecules involved in this process and their translational value. Premetastatic niche (PMN) and macrometastatic niche (MMN) formation in a mouse model is observed via CT combined with 3D organ reconstruction bioluminescence imaging, and then we screen slit guidance ligand 2 (SLIT2) and its receptor roundabout guidance receptor 1 (ROBO1) as important factors. After we confirm the expression and distribution of SLIT2 and ROBO1 in samples from PDAC patients and several mouse models, we discover that SLIT2-ROBO1-mediated coadaptation facilitated the implantation and outgrowth of PDAC disseminated tumour cells (DTCs) in the liver. We also demonstrate the dependence receptor (DR) characteristics of ROBO1 in a follow-up mechanistic study. A neutralizing antibody targeting ROBO1 significantly attenuate liver metastasis of PDAC by preventing the coadaptation effect. Thus, we demonstrate that coadaptation is supported by the DR characteristics in the PMN and MMN.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Camundongos , Carcinoma Ductal Pancreático/genética , Movimento Celular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas
14.
Cell Oncol (Dordr) ; 46(4): 1049-1067, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37012514

RESUMO

PURPOSE: Gastric cancer (GC) is a malignant tumour with high mortality, and liver metastasis is one of the main causes of poor prognosis. SLIT- and NTRK-like family member 4 (SLITRK4) plays an important role in the nervous system, such as synapse formation. Our study aimed to explore the functional role of SLITRK4 in GC and liver metastasis. METHODS: The mRNA level of SLITRK4 was evaluated using publicly available transcriptome GEO datasets and Renji cohort. The protein level of SLITRK4 in the tissue microarray of GC was observed using immunohistochemistry. Cell Counting Kit-8, colony formation, transwell migration assays in vitro and mouse model of liver metastasis in vivo was performed to investigate the functional roles of SLITRK4 in GC. Bioinformatics predictions and Co-IP experiments were applied to screen and identify SLITRK4-binding proteins. Western blot was performed to detect Tyrosine Kinase receptor B (TrkB)-related signaling molecules. RESULTS: By comparing primary and liver metastases from GC, SLITRK4 was found to be upregulated in tissues of GC with liver metastasis and to be closely related to poor clinical prognosis. SLITRK4 knockdown significantly abrogated the growth, invasion, and metastasis of GC in vitro and in vivo. Further study revealed that SLITRK4 could interact with Canopy FGF Signalling Regulator 3 (CNPY3), thus enhancing TrkB- related signaling by promoting the endocytosis and recycling of the TrkB receptor. CONCLUSION: In conclusion, the CNPY3-SLITRK4 axis contributes to liver metastasis of GC according to the TrkB-related signaling pathway. which may be a therapeutic target for the treatment of GC with liver metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias Gástricas , Animais , Camundongos , Neoplasias Gástricas/genética , Linhagem Celular Tumoral , Transdução de Sinais , Neoplasias Hepáticas/patologia , Endocitose , Proliferação de Células/genética
15.
Front Immunol ; 13: 983116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341459

RESUMO

Connexins are membrane expressed proteins, which could assemble into hexamers to transfer metabolites and secondary messengers. However, its roles in pancreatic cancer metastasis remains unknown. In this study, by comparing the gene expression patterns in primary pancreatic cancer patients primary and liver metastasis specimens, we found that Gap Junction Protein Beta 3 (GJB3) significantly increased in Pancreatic ductal adenocarcinoma (PDAC) liver metastasis. Animal experiments verified that GJB3 depletion suppressed the hepatic metastasis of PDAC cancer cells. Further, GJB3 over expression increased the neutrophil infiltration. Mechanistic study revealed that GJB3 form channels between PDAC tumor cells and accumulated neutrophil, which transfer cyclic adenosine monophosphate (cAMP) from cancer to neutrophil cells, which supports the survival and polarization. Taken together, our data suggesting that GJB3 could act as a potential therapeutic target of PDAC liver metastasis.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Neutrófilos/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Proteínas de Membrana , Neoplasias Pancreáticas
16.
EBioMedicine ; 80: 104050, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35561453

RESUMO

BACKGROUND: Cancer elicits a complex adaptive response in an organism. Limited information is available for the body-wide effects induced by cancer. Here, we evaluated multiorgan changes in mouse models of pancreatic ductal adenocarcinoma (PDAC) and its precursor lesions (pancreatic intraepithelial neoplasia, PanIN) to decipher changes that occur during PDAC development. METHODS: RNA-sequencing was employed in the brain, colon, stomach, kidney, heart, liver, and lung tissues of mice with PanIN and PDAC. A combination of differential expression analysis and functional-category enrichment was applied for an in-depth understanding of the multiorgan transcriptome. Differentially expressed genes were verified by quantitative real-time polymerase chain reaction. Neutrophil and macrophage infiltration in multiple organs was analyzed by immunohistochemical staining. Leukotriene B4 (LTB4) levels in mouse and human serum samples were determined by enzyme-linked immunosorbent assay. FINDINGS: Transcriptional changes within diverse organs during PanIN and PDAC stages were identified. Using Gene Ontology enrichment analysis, increased neutrophil infiltration was discovered as a central and prominent affected feature, which occurred in the liver, lung, and stomach at the PanIN stage. The brain appeared to be well protected from the sequels of PanIN or PDAC. Importantly, serum LTB4 was able to discriminate PDAC from normal controls, chronic pancreatitis, and intraductal papillary mucinous neoplasms with high performance. INTERPRETATION: Our study provides a high-resolution cartographic view of the dynamic multiorgan transcriptomic landscape of mice with PDAC and its precursor lesions. Our findings suggest that LTB4 could serve as a biomarker for the early detection of PDAC. FUNDING: The complete list of funders can be found in the Acknowledgement section.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Detecção Precoce de Câncer , Humanos , Leucotrieno B4 , Camundongos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
17.
Redox Biol ; 53: 102326, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525025

RESUMO

The nonunion following a fracture is associated with severe patient morbidity and economic consequences. Currently, accumulating studies are focusing on the importance of macrophages during fracture repair. However, details regarding the process by which macrophages facilitate endochondral ossification (EO) are largely unknown. In this study, we present evidence that apoptotic chondrocytes (ACs) are not inert corpses awaiting removal, but positively modulate the osteoinductive ability of macrophages. In vivo experiments revealed that fatty acid (FA) metabolic processes up-regulated following EO. In vitro studies further uncovered that FAs derived from ACs are taken up by macrophages mainly through macrophage scavenger receptor 1 (MSR1). Then, our functional experiments confirmed that these exogenous FAs subsequently activate peroxisome proliferator-activated receptor α (PPARα), which further facilitates lipid droplets generation and fatty acid oxidation (FAO). Mechanistically, elevated FAO is involved in up-regulating the osteoinductive effect by generating BMP7 and NAD+/SIRT1/EZH2 axis epigenetically controls BMP7 expression in macrophages cultured with ACs culture medium. Our findings advanced the concept that ACs could promote bone regeneration by regulating metabolic and function reprogram in macrophages and identified macrophage MSR1 represents a valuable target for fracture treatments.


Assuntos
Ácidos Graxos , Osteogênese , Condrócitos/metabolismo , Ácidos Graxos/metabolismo , Humanos , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Receptores Depuradores Classe A/metabolismo
18.
Oncogene ; 41(8): 1203-1215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35082383

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), cancer with a high mortality rate and the highest rate of KRAS mutation, reportedly internalizes proteins via macropinocytosis to adapt to low amino acid levels in the tumor microenvironment. Here, we aimed to identify a key regulator of macropinocytosis for the survival of tumor cells in a low amino acid environment in PDAC. FYVE, RhoGEF, and PH domain-containing protein 6 (FGD6) were identified as key regulators of macropinocytosis. FGD6 promoted PDAC cell proliferation, macropinocytosis, and tumor growth both in vitro and in vivo. The macropinocytosis level was decreased with FGD6 knockdown in PDAC cell lines. Moreover, FGD6 promoted macropinocytosis by participating in the trans-Golgi network and enhancing the membrane localization of growth factor receptors, especially the TGF-beta receptor. TGF-beta enhanced macropinocytosis in PDAC cells. Additionally, YAP nuclear translocation induced by a low amino acid tumor environment initiated FGD6 expression by coactivation with YY1. Clinical data analysis based on TCGA and GEO datasets showed that FGD6 expression was upregulated in PDAC tissue, and high FGD6 expression was correlated with poor prognosis in patients with PDAC. In tumor tissue from KrasG12D/+/Trp53R172H/-/Pdx1-Cre (KPC) mice, FGD6 expression escalated during PDAC development. Our results uncover a previously unappreciated mechanism of macropinocytosis in PDAC. Strategies to target FGD6 and growth factors membrane localization might be developed for the treatment of PDAC.


Assuntos
Carcinoma Ductal Pancreático
19.
Int J Biol Sci ; 18(10): 3993-4005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844788

RESUMO

Lymph nodes (LNs) are a common site of metastasis in many solid cancers. Tumour cells can migrate to LNs for further metastatic colonization of distant organs, indicating poor prognosis and requiring different clinical interventions. The histopathological diagnostic methods currently used to detect clinical lymph node metastasis (LNM) have limitations, such as incomplete visualization. To obtain a complete picture of metastatic LNs on the spatial and temporal scales, we used ultimate 3D imaging of solvent-cleared organs (uDISCO) and 3D rapid immunostaining. MC38 cells labelled with EGFP were injected into the left footpads of C57BL/6 mice. Draining lymph nodes (DLNs) harvested from these mice were cleared using the uDISCO method. Metastatic colorectal cancer (CRC) cells in various regions of DLNs from mice at different time points were quantified using 3D imaging of whole-mount tissue. Several stages of tumour cell growth and distribution in LNs were identified: 1) invasion of lymphatic vessels (LVs) and blood vessels (BVs); 2) dispersion outside LVs and BVs for proliferation and expansion; and 3) re-entry into BVs and efferent lymphatic vessels (ELVs) for further distant metastasis. Moreover, these data demonstrated that mouse fibroblast cells (MFCs) could not only promote LNM of tumour cells but also metastasize to LNs together with tumour cells, thus providing a "soil" for tumour cell colonization. In conclusion, 3D imaging of whole-mount tissue and spatiotemporal analysis of LNM may collectively constitute an auxiliary method to improve the accuracy of clinical LNM detection.


Assuntos
Imageamento Tridimensional , Vasos Linfáticos , Animais , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Metástase Linfática/patologia , Vasos Linfáticos/patologia , Camundongos , Camundongos Endogâmicos C57BL
20.
J Immunol Res ; 2021: 6694392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33728352

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is known for its high resistance and low response to treatment. Tumor immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Karyopherin alpha 2 (KPNA2), a member of the nuclear transporter family, is elevated in multiple human cancers and accelerates carcinogenesis. However, the specific role of KPNA2 in PDAC remains unclear. In this study, we found that expression of KPNA2 was significantly upregulated in PDAC compared to adjacent nontumor tissue and its high expression was correlated with poor survival outcome by analyzing the GEO datasets. Similar KPNA2 expression pattern was also found in both human patient samples and KPC mouse models through IHC staining. Although KPNA2 knockdown failed to impair the vitality and migration ability of PDAC cells in vitro, the in vivo tumor growth was significantly impeded and the expression of immune checkpoint ligand PD-L1 was reduced by silencing KPNA2. Furthermore, we uncovered that KPNA2 modulated the expression of PD-L1 by mediating nuclear translocation of STAT3. Collectively, our data suggested that KPNA2 has the potential to serve as a promising biomarker for diagnosis in PDAC.


Assuntos
Antígeno B7-H1/genética , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Evasão Tumoral/imunologia , alfa Carioferinas/genética , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Prognóstico , Transporte Proteico , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA