Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339723

RESUMO

Accurately extracting pixel-level buildings from high-resolution remote sensing images is significant for various geographical information applications. Influenced by different natural, cultural, and social development levels, buildings may vary in shape and distribution, making it difficult for the network to maintain a stable segmentation effect of buildings in different areas of the image. In addition, the complex spectra of features in remote sensing images can affect the extracted details of multi-scale buildings in different ways. To this end, this study selects parts of Xi'an City, Shaanxi Province, China, as the study area. A parallel encoded building extraction network (MARS-Net) incorporating multiple attention mechanisms is proposed. MARS-Net builds its parallel encoder through DCNN and transformer to take advantage of their extraction of local and global features. According to the different depth positions of the network, coordinate attention (CA) and convolutional block attention module (CBAM) are introduced to bridge the encoder and decoder to retain richer spatial and semantic information during the encoding process, and adding the dense atrous spatial pyramid pooling (DenseASPP) captures multi-scale contextual information during the upsampling of the layers of the decoder. In addition, a spectral information enhancement module (SIEM) is designed in this study. SIEM further enhances building segmentation by blending and enhancing multi-band building information with relationships between bands. The experimental results show that MARS-Net performs better extraction results and obtains more effective enhancement after adding SIEM. The IoU on the self-built Xi'an and WHU building datasets are 87.53% and 89.62%, respectively, while the respective F1 scores are 93.34% and 94.52%.

2.
Atmos Chem Phys Discuss ; 19(15): 10087-10110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632450

RESUMO

We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between -5.9% and 10.6%. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2-4%) in the tropical belt (30°N-30°S). For the mid-latitudes, we observed a 1.8 to 3.4 % increase in the Southern Hemisphere for RCP 2.6, 4.5 and 6.0, and found a 2.3% decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 to 5.5% for RCP 2.6, 4.5 and 6.0 and they are lower by 7.9% for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA