Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 478
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(8): 1340-1349.e7, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084714

RESUMO

The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+) , Neoplasias Renais , Lipídeos , Humanos , Glicerol/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Lipídeos/biossíntese , NAD/metabolismo , Oxirredução , Fosfatos/metabolismo
2.
Nature ; 611(7936): 585-593, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36352225

RESUMO

Macrophages are important players in the maintenance of tissue homeostasis1. Perivascular and leptomeningeal macrophages reside near the central nervous system (CNS) parenchyma2, and their role in CNS physiology has not been sufficiently well studied. Given their continuous interaction with the cerebrospinal fluid (CSF) and strategic positioning, we refer to these cells collectively as parenchymal border macrophages (PBMs). Here we demonstrate that PBMs regulate CSF flow dynamics. We identify a subpopulation of PBMs that express high levels of CD163 and LYVE1 (scavenger receptor proteins), closely associated with the brain arterial tree, and show that LYVE1+ PBMs regulate arterial motion that drives CSF flow. Pharmacological or genetic depletion of PBMs led to accumulation of extracellular matrix proteins, obstructing CSF access to perivascular spaces and impairing CNS perfusion and clearance. Ageing-associated alterations in PBMs and impairment of CSF dynamics were restored after intracisternal injection of macrophage colony-stimulating factor. Single-nucleus RNA sequencing data obtained from patients with Alzheimer's disease (AD) and from non-AD individuals point to changes in phagocytosis, endocytosis and interferon-γ signalling on PBMs, pathways that are corroborated in a mouse model of AD. Collectively, our results identify PBMs as new cellular regulators of CSF flow dynamics, which could be targeted pharmacologically to alleviate brain clearance deficits associated with ageing and AD.


Assuntos
Sistema Nervoso Central , Líquido Cefalorraquidiano , Macrófagos , Tecido Parenquimatoso , Animais , Camundongos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Líquido Cefalorraquidiano/metabolismo , Macrófagos/fisiologia , Meninges/citologia , Reologia , Proteínas da Matriz Extracelular/metabolismo , Envelhecimento/metabolismo , Fagocitose , Endocitose , Interferon gama/metabolismo , Tecido Parenquimatoso/citologia , Humanos
3.
Cell Mol Life Sci ; 81(1): 25, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212570

RESUMO

Increased circulating amino acid levels have been linked to insulin resistance and development of type 2 diabetes (T2D), but the underlying mechanism remains largely unknown. Herein, we show that tryptophan modifies insulin receptor (IR) to attenuate insulin signaling and impair glucose uptake. Mice fed with tryptophan-rich chow developed insulin resistance. Excessive tryptophan promoted tryptophanyl-tRNA synthetase (WARS) to tryptophanylate lysine 1209 of IR (W-K1209), which induced insulin resistance by inhibiting the insulin-stimulated phosphorylation of IR, AKT, and AS160. SIRT1, but not other sirtuins, detryptophanylated IRW-K1209 to increase the insulin sensitivity. Collectively, we unveiled the mechanisms of how tryptophan impaired insulin signaling, and our data suggested that WARS might be a target to attenuate insulin resistance in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Camundongos , Animais , Insulina/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Triptofano/metabolismo , Fosforilação , Glucose/metabolismo
4.
Crit Rev Clin Lab Sci ; : 1-17, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847284

RESUMO

Pulmonary arterial hypertension (PAH), one subtype of pulmonary hypertension (PH), is a life-threatening condition characterized by pulmonary arterial remodeling, elevated pulmonary vascular resistance, and blood pressure in the pulmonary arteries, leading to right heart failure and increased mortality. The disease is marked by endothelial dysfunction, vasoconstriction, and vascular remodeling. The role of Sodium-Glucose Co-Transporter-2 (SGLT2) inhibitors, a class of medications originally developed for diabetes management, is increasingly being explored in the context of cardiovascular diseases, including PAH, due to their potential to modulate these pathophysiological processes. In this review, we systematically examine the burgeoning evidence from both basic and clinical studies that describe the effects of SGLT2 inhibitors on cardiovascular health, with a special emphasis on PAH. By delving into the complex interactions between these drugs and the potential pathobiology that underpins PH, this study seeks to uncover the mechanistic underpinnings that could justify the use of SGLT2 inhibitors as a novel therapeutic approach for PAH. We collate findings that illustrate how SGLT2 inhibitors may influence the normal function of pulmonary arteries, possibly alleviating the pathological hallmarks of PAH such as inflammation, oxidative stress, aberrant cellular proliferation, and so on. Our review thereby outlines a potential paradigm shift in PAH management, suggesting that these inhibitors could play a crucial role in modulating the disease's progression by targeting the potential dysfunctions that drive it. This comprehensive synthesis of existing research underscores the imperative need for further clinical trials to validate the efficacy of SGLT2 inhibitors in PAH and to integrate them into the therapeutic agents used against this challenging disease.

5.
Anal Chem ; 96(1): 331-338, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127443

RESUMO

Bioactive molecules are highly worthwhile to recognize and explore the latent pathogenic mechanism. Conventional methods for bioactive molecule detection, including mass spectrometry and fluorescent probe imaging, are limited due to the complex processing and signal interference. Here, we designed enzyme-reaction-assisted programmable transcriptional switches for the detection of bioactive molecules. The approach is based on the use of programmable enzyme site-specific cleavage-assisted DNA triplex-based conformational switches that, upon responding to bioactive molecules, can trigger the transcription of fluorescent light-up aptamers. Thanks to the programmable nature of the sensing platform, the method can be adapted to different bioactive molecules, and we demonstrated the enzyme-small molecule catalytic reaction combination of myeloperoxidase (MPO)-hydrogen peroxide (H2O2) as a model that transcriptional switches was capable of detecting H2O2 and possessed the specificity and anti-interference ability in vitro. Furthermore, we successfully applied the switches into cells to observe the detection feasibility in vivo, and dynamically monitored changes of H2O2 in cellular oxidative stress levels. Therefore, we attempt to amalgamate the advantages of enzyme reaction with the pluripotency of programmable transcriptional switches, which can take both fields a step further, which may promote the research of biostimuli and the construction of DNA molecular devices.


Assuntos
DNA , Peróxido de Hidrogênio , DNA/química , Estresse Oxidativo , Conformação de Ácido Nucleico , Corantes Fluorescentes/química
6.
Small ; : e2405986, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248675

RESUMO

Due to the low stability and high cost of some natural enzymes, nanozymes have been developed as enzyme-imitating nanomaterials. Single-atom nanozymes are a class of nanozymes with metal centers that mimic the structure of metal-based natural enzymes. Herein, Cu-N-C single-atom nanozyme (SAN) is synthesized with excellent peroxidase- and enhanced oxidase-like activities to mimic the action of natural galactose oxidase. Cu-SAN demonstrates stereospecific activity akin to that of natural galactose oxidase by oxidizing D-galactose and primary alcohol but not L-Galactose or other carbohydrates. The SAN can catalyze the oxidation of galactose in the presence of oxygen, producing hydrogen peroxide as a sub-product. The produced hydrogen peroxide then oxidizes 3,3',5,5'-tetramethylbenzidine catalyzed by the SAN, yielding the typical blue product. The relationship between absorbance and galactose concentration is linear in the 1-60 µm range with a detection limit as low as 0.23 µm. This strategy can be utilized in the diagnosis of galactosemia disorder and detection of galactose in some dairy and other commercial products. DFT calculations clarify the high activity of the Cu sites in the POD-like reaction and explain the selectivity of the Cu-SAN oxidase-like reaction toward D-galactose.

7.
Opt Express ; 32(4): 5301-5322, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439261

RESUMO

Source and mask optimization (SMO) technology is increasingly relied upon for resolution enhancement of photolithography as critical dimension (CD) shrinks. In advanced CD technology nodes, little process variation can impose a huge impact on the fidelity of lithography. However, traditional source and mask optimization (SMO) methods only evaluate the imaging quality in the focal plane, neglecting the process window (PW) that reflects the robustness of the lithography process. PW includes depth of focus (DOF) and exposure latitude (EL), which are computationally intensive and unfriendly to gradient-based SMO algorithms. In this study, we propose what we believe to be a novel process window enhancement SMO method based on the Nondominated Sorting Genetic Algorithm II (NSGA-II), which is a multi-objective optimization algorithm that can provide multiple solutions. By employing the variational lithography model (VLIM), a fast focus-variation aerial image model, our method, NSGA-SMO, can directly optimize the PW performance and improve the robustness of SMO results while maintaining the in-focus image quality. Referring to the simulations of two typical patterns, NSGA-SMO showcases an improvement of more than 20% in terms of DOF and EL compared to conventional multi-objective SMO, and even four times superior to single-objective SMO for complicated patterns.

8.
Nature ; 564(7734): E7, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397347

RESUMO

Change history: In this Article, Extended Data Fig. 9 was appearing as Fig. 2 in the HTML, and in Fig. 2, the panel labels 'n' and 'o' overlapped the figure; these errors have been corrected online.

9.
Nature ; 560(7717): 185-191, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046111

RESUMO

Ageing is a major risk factor for many neurological pathologies, but its mechanisms remain unclear. Unlike other tissues, the parenchyma of the central nervous system (CNS) lacks lymphatic vasculature and waste products are removed partly through a paravascular route. (Re)discovery and characterization of meningeal lymphatic vessels has prompted an assessment of their role in waste clearance from the CNS. Here we show that meningeal lymphatic vessels drain macromolecules from the CNS (cerebrospinal and interstitial fluids) into the cervical lymph nodes in mice. Impairment of meningeal lymphatic function slows paravascular influx of macromolecules into the brain and efflux of macromolecules from the interstitial fluid, and induces cognitive impairment in mice. Treatment of aged mice with vascular endothelial growth factor C enhances meningeal lymphatic drainage of macromolecules from the cerebrospinal fluid, improving brain perfusion and learning and memory performance. Disruption of meningeal lymphatic vessels in transgenic mouse models of Alzheimer's disease promotes amyloid-ß deposition in the meninges, which resembles human meningeal pathology, and aggravates parenchymal amyloid-ß accumulation. Meningeal lymphatic dysfunction may be an aggravating factor in Alzheimer's disease pathology and in age-associated cognitive decline. Thus, augmentation of meningeal lymphatic function might be a promising therapeutic target for preventing or delaying age-associated neurological diseases.


Assuntos
Envelhecimento/líquido cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/fisiopatologia , Vasos Linfáticos/fisiopatologia , Meninges/fisiopatologia , Envelhecimento/patologia , Doença de Alzheimer/patologia , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Cognição , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/terapia , Modelos Animais de Doenças , Líquido Extracelular/metabolismo , Feminino , Homeostase , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/patologia , Masculino , Meninges/patologia , Camundongos , Camundongos Transgênicos , Perfusão
10.
BMC Public Health ; 24(1): 1667, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909195

RESUMO

BACKGROUND: HALE is now a regular strategic planning indicator for all levels of the Chinese government. However, HALE measurements necessitate comprehensive data collection and intricate technology. Therefore, effectively converting numerous diseases into the years lived with disability (YLD) rate is a significant challenge for HALE measurements. Our study aimed to construct a simple YLD rate measurement model with high applicability based on the current situation of actual data resources within China to address challenges in measuring HALE target values during planning. METHODS: First, based on the Chinese YLD rate in the Global Burden of Disease (GBD) 2019, Pearson correlation analysis, the global optimum method, etc., was utilized to screen the best predictor variables from the current Chinese data resources. Missing data for predictor variables were filled in via spline interpolation. Then, multiple linear regression models were fitted to construct the YLD rate measurement model. The Sullivan method was used to measure HALE. The Monte Carlo method was employed to generate 95% uncertainty intervals. Finally, model performances were assessed using the mean absolute error (MAE) and mean absolute percentage error (MAPE). RESULTS: A three-input-parameter model was constructed to measure the age-specific YLD rates by sex in China, directly using the incidence of infectious diseases, the incidence of chronic diseases among persons aged 15 and older, and the addition of an under-five mortality rate covariate. The total MAE and MAPE for the combined YLD rate were 0.0007 and 0.5949%, respectively. The MAE and MAPE of the combined HALE in the 0-year-old group were 0.0341 and 0.0526%, respectively. There were slightly fewer males (0.0197, 0.0311%) than females (0.0501, 0.0755%). CONCLUSION: We constructed a high-accuracy model to measure the YLD rate in China by using three monitoring indicators from the Chinese national routine as predictor variables. The model provides a realistic and feasible solution for measuring HALE at the national and especially regional levels, considering limited data.


Assuntos
Expectativa de Vida , Humanos , China/epidemiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Adolescente , Idoso de 80 Anos ou mais , Lactente , Adulto Jovem , Pré-Escolar , Modelos Estatísticos , Criança , Recém-Nascido , Anos de Vida Ajustados por Deficiência , Anos de Vida Ajustados por Qualidade de Vida
11.
BMC Med Inform Decis Mak ; 24(1): 253, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39272143

RESUMO

BACKGROUND: The association between red blood cell distribution width (RDW) to albumin ratio (RAR) and prognosis in patients with acute respiratory failure (ARF) admitted to the Intensive Care Unit (ICU) remains unclear. This retrospective cohort study aims to investigate this association. METHODS: Clinical information of ARF patients was collected from the Medical Information Mart for Intensive Care IV (MIMIC-IV) version 2.0 database. The primary outcome was, in-hospital mortality and secondary outcomes included 28-day mortality, 60-day mortality, length of hospital stay, and length of ICU stay. Cox regression models and subgroup analyses were conducted to explore the relationship between RAR and mortality. RESULTS: A total of 4547 patients with acute respiratory failure were enrolled, with 2277 in the low ratio group (RAR < 4.83) and 2270 in the high ratio group (RAR > = 4.83). Kaplan-Meier survival analysis demonstrated a significant difference in survival probability between the two groups. After adjusting for confounding factors, the Cox regression analysis showed that the high RAR ratio had a higher hazard ratio (HR) for in-hospital mortality (HR 1.22, 95% CI 1.07-1.40; P = 0.003), as well as for 28-day mortality and 60-day mortality. Propensity score-matched (PSM) analysis further supported the finding that high RAR was an independent risk factor for ARF. CONCLUSION: This study reveals that RAR is an independent risk factor for poor clinical prognosis in patients with ARF admitted to the ICU. Higher RAR levels were associated with increased in-hospital, 28-day and 60-day mortality rates.


Assuntos
Biomarcadores , Índices de Eritrócitos , Mortalidade Hospitalar , Humanos , Estudos Retrospectivos , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Idoso , Biomarcadores/sangue , Unidades de Terapia Intensiva , Insuficiência Respiratória/sangue , Albumina Sérica/análise , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/mortalidade
12.
Mikrochim Acta ; 191(5): 248, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587676

RESUMO

Tumor-associated antigen (TAA)-based diagnosis has gained prominence for early tumor screening, treatment monitoring, prognostic assessment, and minimal residual disease detection. However, limitations such as low sensitivity and difficulty in extracting non-specific binding membrane proteins still exist in traditional detection methods. Upconversion luminescence (UCL) exhibits unique physical and chemical properties under wavelength near-infrared light excitation. Rolling circle amplification (RCA) is an efficient DNA amplification technique with amplification factors as high as 105. Therefore, the above two excellent techniques can be employed for highly accurate imaging analysis of tumor cells. Herein, we developed a novel nanoplatform for TAA-specific cell imaging based on UCL and RCA technology. An aptamer-primer complex selectively binds to Mucin 1 (MUC1), one of TAA on cell surface, to trigger RCA reaction, generating a large number of repetitive sequences. These sequences provide lots of binding sites for complementary signal probes, producing UCL from lanthanide-doped upconversion nanoparticles (UCNPs) after releasing quencher group. The experimental results demonstrate the specific attachment of upconversion nanomaterials to cancer cells which express a high level of MUC1, indicating the potential of UCNPs and RCA in tumor imaging.


Assuntos
Luminescência , Ácidos Nucleicos , Diagnóstico por Imagem , Membrana Celular , Técnicas de Amplificação de Ácido Nucleico
13.
Alzheimers Dement ; 20(10): 6844-6859, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39171353

RESUMO

INTRODUCTION: Reduced brain energy metabolism, mammalian target of rapamycin (mTOR) dysregulation, and extracellular amyloid beta (Aß) oligomer (xcAßO) buildup are some well-known Alzheimer's disease (AD) features; how they promote neurodegeneration is poorly understood. We previously reported that xcAßOs inhibit nutrient-induced mitochondrial activity (NiMA) in cultured neurons. We now report NiMA disruption in vivo. METHODS: Brain energy metabolism and oxygen consumption were recorded in heterozygous amyloid precursor protein knock-in (APPSAA) mice using two-photon fluorescence lifetime imaging and multiparametric photoacoustic microscopy. RESULTS: NiMA is inhibited in APPSAA mice before other defects are detected in these Aß-producing animals that do not overexpress APP or contain foreign DNA inserts into genomic DNA. Glycogen synthase kinase 3 (GSK3ß) signals through mTORC1 to regulate NiMA independently of mitochondrial biogenesis. Inhibition of GSK3ß with TWS119 stimulates NiMA in cultured human neurons, and mitochondrial activity and oxygen consumption in APPSAA mice. DISCUSSION: NiMA disruption in vivo occurs before plaques, neuroinflammation, and cognitive decline in APPSAA mice, and may represent an early stage in human AD. HIGHLIGHTS: Amyloid beta blocks communication between lysosomes and mitochondria in vivo. Nutrient-induced mitochondrial activity (NiMA) is disrupted long before the appearance of Alzheimer's disease (AD) histopathology in heterozygous amyloid precursor protein knock-in (APPSAA/+) mice. NiMA is disrupted long before learning and memory deficits in APPSAA/+ mice. Pharmacological interventions can rescue AD-related NiMA disruption in vivo.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Modelos Animais de Doenças , Mitocôndrias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Metabolismo Energético/fisiologia , Técnicas de Introdução de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Consumo de Oxigênio
14.
Syst Parasitol ; 101(3): 33, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647718

RESUMO

The mitochondrial (mt) genome can provide data for phylogenetic analyses and evolutionary biology. Herein, we sequenced and annotated the complete mt genome of Ergasilus anchoratus. This mt genome was 13852 bp long and comprised 13 protein-coding genes (PCGs), 22 tRNAs and 2 rRNAs. All PCGs used the standard ATN start codons and complete TAA/TAG termination codons. A majority of tRNA genes exhibited standard cloverleaf secondary structures, with the exception of one tRNA that lacked the TψC arm (trnC), and three tRNAs that lacked the DHU arm (trnR, trnS1 and trnS2). Phylogenetic analyses conducted using Bayesian inference (BI) and maximum likelihood (ML) methods both supported Ergasilidae as a monophyletic family forming a sister group to Lernaea cyprinacea and Paracyclopina nana. It also supported the monophyly of orders Calanoida, Cyclopoida, and Siphonostomatoida; and the monophyly of families Harpacticidae, Ergasilidae, Diaptomidae, and Calanidae. The gene orders of E. anchoratus and Sinergasilus undulatus were identical, which represents the first instance of two identical gene orders in copepods. More mt genomes are needed to better understand the phylogenetic relationships within Copepoda in the future.


Assuntos
Copépodes , Genoma Mitocondrial , Filogenia , Animais , Genoma Mitocondrial/genética , Copépodes/genética , Copépodes/classificação
15.
Pak J Med Sci ; 40(9): 2112-2117, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39416623

RESUMO

Objective: Lactate dehydrogenase (LDH) is an enzyme that is responsible for the production of lactic acid, which is a necessary byproduct when the body does not have enough oxygen. LDH levels in the blood can be used as a marker to predict mortality in patients with ARDS, severe COVID-19, and cancer. To analyze the clinical characteristics of COVID-19 in the elderly and the correlation between LDH and respiratory failure in COVID-19 patients, to improve the identification and management of this type of pneumonia by clinicians. Methods: This was a single-center retrospective study. We performed routine laboratory tests in 105 COVID-19 patients admitted to the affiliated hospital of Qingdao University (Qingdao, China) from October 1, 2022 to February 1, 2023. The diagnosis of respiratory failure was established based on the results of blood gas analysis upon admission. Results: The median age was 79 years. Among all univariable parameters, LDH, neutrophil to lymphocyte ratio (NLR) and Prothrombin Time (PT) were significantly independent risk factors of RF in elderly COVID-19 patients. LDH (AUC=0.829) also had a maximum specificity (96.5%), with the cutoff value of 280.5. Conclusion: The levels of LDH, NLR, and PT may serve as potential indicators for elderly COVID-19 patients combined with respiratory failure. LDH, NLR and PT assays can be beneficial for patients who need closer respiratory monitoring and more aggressive supportive care to prevent a negative prognosis.

16.
Lab Invest ; 103(12): 100266, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871834

RESUMO

Sepsis-induced acute respiratory distress syndrome (ARDS) is a devastating clinically severe respiratory disorder, and no effective therapy is available. Melatonin (MEL), an endogenous neurohormone, has shown great promise in alleviating sepsis-induced ARDS, but the underlying molecular mechanism remains unclear. Using a lipopolysaccharide (LPS)-treated mouse alveolar macrophage cell line (MH-S) model, we found that MEL significantly inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation in LPS-treated macrophages, whereas this inhibitory effect of MEL was weakened in MH-S cells transfected with glucose transporter 1 (GLUT1) overexpressing lentivirus. Further experiments showed that MEL downregulated GLUT1 via inhibition of hypoxia-inducible factor 1 (HIF-1α). Notably, hydrogen peroxide (H2O2), a donor of reactive oxygen species (ROS), significantly increased the level of intracellular ROS and inhibited the regulatory effect of MEL on the HIF-1α/GLUT1 pathway. Interestingly, the protective effect of MEL was attenuated after the knockdown of melatonin receptor 1A (MT1) in MH-S cells. We also confirmed in vivo that MEL effectively downregulated the HIF-1α/GLUT1/NLRP3 pathway in the lung tissue of LPS-treated mice, as well as significantly ameliorated LPS-induced lung injury and improved survival in mice. Collectively, these findings revealed that MEL regulates the activation of the ROS/HIF-1α/GLUT1/NLRP3 pathway in alveolar macrophages via the MT1 receptor, further alleviating sepsis-induced ARDS.


Assuntos
Melatonina , Síndrome do Desconforto Respiratório , Sepse , Camundongos , Animais , Inflamassomos/metabolismo , Macrófagos Alveolares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Melatonina/farmacologia , Melatonina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteínas NLR/metabolismo , Lipopolissacarídeos/farmacologia , Transportador de Glucose Tipo 1 , Peróxido de Hidrogênio/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico
17.
J Transl Med ; 21(1): 699, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805555

RESUMO

BACKGROUND: Epidemiological studies demonstrated that multiple amino acids (AAs) were associated with cardiovascular diseases (CVDs), but whether these associations were causal remains unclear. This study aims to investigate the causal relationships between circulating levels of 20 AAs and 10 CVDs in European and East Asian populations by Mendelian randomization (MR). METHODS: This MR study utilized single-nucleotide polymorphisms that were significantly associated with AAs as instrumental variables. Summary-level data for AAs and CVDs were obtained from public genome-wide association studies. The causal effects were primarily estimated by inverse variance weighting with multiplicative random effect method. Sensitivity analyses, including weighted median, weighted mode, and MR Egger regression, were used to test the robustness of our results. RESULTS: In the European population, alanine and serine were inversely associated with angina pectoris (AP) and chronic heart failure, respectively. With each unit increase of leucine, the risk of ischemic stroke increased by 10%. Moreover, tyrosine was positively associated with AP and deep vein thrombosis. In the East Asian population, each unit increase in glycine was associated with 4.1% and 9.0% decreased risks of coronary artery disease (CAD) and myocardial infarction (MI), respectively. A unit increase in serine was associated with 13.1%, 12.6% and 15.5% decreased risks of AP, CAD and MI, respectively. Sensitivity analyses supported the robustness of our results. CONCLUSIONS: This MR study demonstrated significant causal effects of circulating levels of AAs on CVDs, indicating the potential use of AAs as biomarkers or as therapeutic targets for CVD in clinical scenarios.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Aminoácidos , Doenças Cardiovasculares/genética , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Angina Pectoris , Serina , Polimorfismo de Nucleotídeo Único/genética
18.
Opt Lett ; 48(2): 195-198, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36638416

RESUMO

Multi-parametric photoacoustic microscopy (PAM) is uniquely capable of simultaneous high-resolution mapping of blood oxygenation and flow in vivo. However, its speed has been limited by the dense sampling required for blood flow quantification. To overcome this limitation, we have developed a high-speed multi-parametric PAM system, which enables simultaneous acquisition of ∼500 densely sampled B-scans by superposing the rapid optical scanning across the line-shaped focus of a cylindrically focused ultrasonic transducer over the conventional mechanical scan of the optical-acoustic dual foci. A novel, to the best of our knowledge, optical-acoustic combiner (OAC) is designed and implemented to accommodate the short working distance of the transducer, enabling convenient confocal alignment of the dual foci in reflection mode. A resonant galvanometer (GM) provides stabilized high-speed large-angle scanning. This new system can continuously monitor microvascular blood oxygenation (sO2) and flow over a 4.5 × 3 mm2 area in the awake mouse brain with high spatial and temporal resolutions (6.9 µm and 0.3 Hz, respectively).


Assuntos
Microscopia , Técnicas Fotoacústicas , Animais , Camundongos , Acústica , Análise Espectral , Transdutores
19.
Nutr Metab Cardiovasc Dis ; 33(4): 883-891, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36775708

RESUMO

BACKGROUND AND AIMS: Diabetes is associated with increased risk of certain cardiovascular diseases, yet the causality remains to be determined. Meanwhile, given that first-degree relatives share 50% of genes, the effect of familial diabetes is also worthy of attention. Therefore, we sought to investigate the causal relations of individual or familial diabetes with eight cardiovascular diseases, including myocardial infarction, hypertension, atrial fibrillation, heart failure, cardiac death, pulmonary embolism, transient ischemic attack, and ischemic stroke. METHODS AND RESULTS: Applying two-sample Mendelian randomization, we selected instruments for genetic predisposition to individual or familial diabetes based on published genome-wide association studies. The primary analyses were conducted using the random-effects inverse-variance weighted method. We found that genetically predicted individual diabetes was causally associated with higher risks of myocardial infarction (odd ratio [OR] = 1.09; 95% confidence interval [CI]: 1.05-1.13; P < 0.0001), hypertension (OR = 1.08; 95% CI: 1.03-1.13; P = 0.0006), and ischemic stroke (OR = 1.10; 95% CI: 1.05-1.15; P < 0.0001). Genetically predicted paternal diabetes could increase the risk of ischemic stroke (OR = 1.16; 95% CI: 1.04-1.30; P = 0.0061). Genetically predicted maternal diabetes could increase the risk of myocardial infarction (OR = 1.18; 95% CI: 1.09-1.29; P = 0.0001). Genetically predicted siblings' diabetes was causally associated with higher risks of myocardial infarction (OR = 1.17; 95% CI: 1.08-1.27; P = 0.0001) and hypertension (OR = 1.19; 95% CI: 1.06-1.34; P = 0.0036). No significant differences were observed in other outcomes. CONCLUSION: This study supports causal effects of not only individual but also familial diabetes on the development of cardiovascular diseases, which will help realize the potential effect of family history in the prevention of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Hipertensão , AVC Isquêmico , Infarto do Miocárdio , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único
20.
Int Arch Occup Environ Health ; 96(6): 785-796, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37079056

RESUMO

OBJECTIVE: Antineoplastic drugs (ADs) are widely used in clinical practice and have been demonstrated to be effective in treating malignant tumors. However, they carry a risk of cytogenotoxicity for healthcare workers. Studies have reported that genotoxic biomarkers can be applied to assess the occupational health status of healthcare workers at an early stage, but results of different studies are variable. The objectives of the review were examine the association between long-term exposure to ADs and cytogenetic damage to healthcare workers. METHODS: We systematically reviewed studies between 2005 and 2021 using PubMed, Embase and Web of Science databases that used cytogenetic biomarkers to assess occupational exposure to ADs in healthcare workers. We used RevMan5.4 to analyze the tail length parameters of the DNA, frequency of the chromosomal aberrations, sister chromatid exchanges and micronuclei. A total of 16 studies were included in our study. The studies evaluate the quality of the literature through the Agency for Healthcare Research and Quality. RESULTS: The results revealed that under the random-effects model, the estimated standard deviation was 2.37 (95% confidence interval [CI] 0.92-3.81, P = 0.001) for the tail length parameters of the DNA, 1.48 (95% CI 0.71-2.25, P = 0.0002) for the frequency of chromosomal aberrations, 1.74 (95% CI 0.49-2.99, P = 0.006) for the frequency of sister chromatid exchanges and 1.64 (95% CI 0.83-2.45, P < 0.0001) for the frequency of micronuclei. CONCLUSIONS: The results indicate that there is a significant association between occupational exposure to ADs and cytogenetic damage, to which healthcare workers should be alerted.


Assuntos
Antineoplásicos , Exposição Ocupacional , Humanos , Antineoplásicos/efeitos adversos , Aberrações Cromossômicas/induzido quimicamente , Pessoal de Saúde , Exposição Ocupacional/efeitos adversos , Biomarcadores , Troca de Cromátide Irmã , Análise Citogenética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA