Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 28(4): 5179-5188, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121743

RESUMO

In this paper, pure silk protein was extracted from Bombyx mori silks and fabricated into a new kind of disordered bio-microfiber structure using electrospinning technology. Coherent random lasing emission with low threshold was achieved in the silk fibroin fibers. The random lasing emission wavelength can be tuned in the range of 33 nm by controlling the pump location with different scattering strengths. Therefore, the bio-microfiber random lasers can be a wide spectral light source when the system is doped with a gain or energy transfer medium with a large fluorescence emission band. Application of the random lasers of the bio-microfibers as a low-coherence light source in speckle-free imaging had also been studied.


Assuntos
Fibroínas/química , Lasers , Luz , Animais , Bombyx , Fibroínas/ultraestrutura , Processamento de Imagem Assistida por Computador , Dispositivos Ópticos
2.
Nanomaterials (Basel) ; 11(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451028

RESUMO

We numerically investigate the multipolar plasmonic resonances of Aluminum nanoantenna tuned by a monolayer graphene from ultraviolet (UV) to visible regime. It is shown that the absorbance of the plasmonic odd modes (l = 1 and l = 3) of graphene-Al nanoribbon structure is enhanced while the absorption at the plasmonic even modes (l = 2) is suppressed, compared to the pure Al nanoribbon structure. With the presence of the monolayer graphene, a change in the resonance strength of the multipolar plasmonic modes results from the near field interactions of the monolayer graphene with the electric fields of the multipolar plasmonic resonances of the Al resonator. In particular, a clear absorption peak with a high quality (Q)-factor of 27 of the plasmonic third-order mode (l = 3) is realized in the graphene-Al nanoribbon structure. The sensitivity and figure of merit of the plasmonic third-order mode of the proposed Graphene-Al nanoribbon structure can reach 25 nm/RIU and 3, respectively, providing potential applications in optical refractive-index sensing.

3.
Nanomaterials (Basel) ; 10(12)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276469

RESUMO

We theoretically investigate multiple Fano resonances in an asymmetric hybrid graphene-metal metamaterial. The multiple Fano resonances emerge from the coupling of the plasmonic narrow bonding and antibonding modes supported by an in-plane graphene nanoribbon dimer with the broad magnetic resonance mode supported by a gold split-ring resonator. It is found that the Fano resonant mode with its corresponding dark mode of the antibonding mode in the in-plane graphene nanoribbon dimer is only achieved by structural symmetry breaking. The multiple Fano resonances can be tailored by tuning the structural parameters and Fermi levels. Active control of the multiple Fano resonances enables the proposed metamaterial to be widely applied in optoelectronic devices such as tunable sensors, switches, and filters.

4.
Artigo em Inglês | MEDLINE | ID: mdl-28549295

RESUMO

Carotenoids can self-assemble in hydrated polar solvents to form J- or H-type aggregates, inducing dramatic changes in photophysical properties. Here, we measured absorption and emission spectra of astaxanthin in ethanol-water solution using ultraviolet-visible and fluorescence spectrometers. Two types of aggregates were distinguished in mixed solution at different water contents by absorption spectra. After addition of water, all probed samples immediately formed H-aggregates with maximum blue shift of 31nm. In addition, J-aggregate was formed in 1:3 ethanol-water solution measured after an hour. Based on Frenkel exciton model, we calculated linear absorption and emission spectra of these aggregates to describe aggregate structures in solution. For astaxanthin, experimental results agreed well with the fitted spectra of H-aggregate models, which consisted of tightly packed stacks of individual molecules, including hexamers, trimers, and dimers. Transition moment of single astaxanthin in ethanol was obtained by Gaussian 09 program package to estimate the distance between molecules in aggregates. Intermolecular distance of astaxanthin aggregates ranges from 0.45nm to 0.9nm. Fluorescence analysis showed that between subbands, strong exciton coupling induced rapid relaxation of H-aggregates. This coupling generated larger Stokes shift than monomers and J-aggregates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA