Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298066

RESUMO

The issue of identity authentication for online medical services has been one of the key focuses of the healthcare industry in recent years. Most healthcare organizations use centralized identity management systems (IDMs), which not only limit the interoperability of patient identities between institutions of healthcare, but also create isolation between data islands. The more important matter is that centralized IDMs may lead to privacy disclosure. Therefore, we propose Health-zkIDM, a decentralized identity authentication system based on zero-knowledge proof and blockchain technology, which allows patients to identify and verify their identities transparently and safely in different health fields and promotes the interaction between IDM providers and patients. The users in Health-zkIDM are uniquely identified by one ID registered. The zero-knowledge proof technology is deployed on the client, which provides the user with a proof of identity information and automatically verifies the user's identity after registration. We implemented chaincodes on the Fabric, including the upload of proof of identity information, identification, and verification functions. The experiences show that the performance of the Health-zkIDM system can achieve throughputs higher than 400 TPS in Caliper.


Assuntos
Blockchain , Humanos , Atenção à Saúde , Privacidade , Tecnologia
2.
Phys Med Biol ; 64(18): 185003, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30808019

RESUMO

Cell nuclei image segmentation technology can help researchers observe each cell's stress response to drug treatment. However, it is still a challenge to accurately segment the adherent cell nuclei. At present, image segmentation based on a fully convolutional network (FCN) is attracting researchers' attention. We propose a multiple FCN architecture and repetitive training (M-FCN-RT) method to learn features of cell nucleus images. In M-FCN-RT, the multiple FCN (M-FCN) architecture is composed of several single FCNs (S-FCNs) with the same structure, and each FCN is used to learn the specific features of image datasets. In this paper, the M-FCN contains three FCNs; FCN1-2, FCN3 and FCNB. FCN1-2 and FCN3 are respectively used to learn the spatial features of cell nuclei for generating probability maps to indicate nucleus regions of an image; FCNB (boundary FCN) is used to learn the edge features of cell nuclei for generating the nucleus boundary. For the training of each FCN, we propose a repetitive training (RT) method to improve the classification accuracy of the model. To segment cell nuclei, we finally propose an algorithm combining the probability map and boundary (PMB) to segment the adherent nuclei. This paper uses a public opening nucleus image dataset to train, verify and evaluate the proposed M-FCN-RT and PMB methods. Our M-FCN-RT method achieves a high Dice similarity coefficient (DSC) of 92.11%, 95.64% and 87.99% on the three types of sub-datasets respectively for probability maps. In addition, segmentation experimental results show the PMB method is more effective and efficient compared with other methods.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Núcleo Celular/metabolismo , Humanos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA