Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 104(6): 3329-3340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38082555

RESUMO

BACKGROUND: Zanthoxylum seed, as a low-cost and easily accessible plant protein resource, has good potential in the food industry. But protein and its hydrolysates from Zanthoxylum seed are underutilized due to the dearth of studies on them. This study aimed to investigate the structure and physicochemical and biological activities of Zanthoxylum seed protein (ZSP) hydrolysates prepared using Protamex®, Alcalase®, Neutrase®, trypsin, or pepsin. RESULTS: Hydrolysis using each of the five enzymes diminished average particle size and molecular weight of ZSP but increased random coil content. ZSP hydrolysate prepared using pepsin had the highest degree of hydrolysis (24.07%) and the smallest molecular weight (<13 kDa) and average particle size (129.80 nm) with the highest solubility (98.9%). In contrast, ZSP hydrolysate prepared using Alcalase had the highest surface hydrophobicity and foaming capacity (88.89%), as well as the lowest foam stability (45.00%). Moreover, ZSP hydrolysate prepared using Alcalase exhibited the best hydroxyl-radical scavenging (half maximal inhibitory concentration (IC50 ) 1.94 mg mL-1 ) and ferrous-ion chelating (IC50 0.61 mg mL-1 ) activities. Additionally, ZSP hydrolysate prepared using pepsin displayed the highest angiotensin-converting enzyme inhibition activity (IC50 0.54 mg mL-1 ). CONCLUSION: These data showed that enzyme hydrolysis improved the physicochemical properties of ZSP, and enzymatic hydrolysates of ZSP exhibited significant biological activity. These results provided validation for application of ZSP enzymatic hydrolysates as antioxidants and antihypertensive agents in the food or medicinal industries. © 2023 Society of Chemical Industry.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Zanthoxylum , Inibidores da Enzima Conversora de Angiotensina/química , Hidrolisados de Proteína/química , Pepsina A/metabolismo , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Sementes/metabolismo , Subtilisinas/química
2.
J Sci Food Agric ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651728

RESUMO

BACKGROUND: The present study investigated the structure, functional and physicochemical properties of lotus seed protein (LSP) under different pH environments. The structures of LSP were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Fourier transform infrared spectroscopy (FTIR), zeta potential, particle size distributions, free sulfhydryl and rheological properties. The functional and physicochemical properties of LSP were characterized by color, foaming property, emulsification property, solubility, oil holding capacity, water holding capacity, differential scanning calorimetry analysis and surface hydrophobicity. RESULTS: LSP was mainly composed of eight subunits (18, 25, 31, 47, 51, 56, 65 and 151 kDa), in which the richest band was 25 kDa. FTIR results showed that LSP had high total contents of α-helix and ß-sheet (44.81-46.85%) in acidic environments. Meanwhile, there was more ß-structure and random structure in neutral and alkaline environments (pH 7.0 and 9.0). At pH 5.0, LSP had large particle size (1576.98 nm), high emulsion stability index (91.43 min), foaming stability (75.69%) and water holding capacity (2.21 g g-1), but low solubility (35.98%), free sulfhydryl content (1.95 µmol g-1) and surface hydrophobicity (780). DSC analysis showed the denaturation temperatures (82.23 °C) of LSP at pH 5.0 was higher than those (80.10, 80.52 and 71.82 °C) at pH 3.0, 7.0 and 9.0. The analysis of rheological properties showed that LSP gel had high stability and great strength in an alkaline environment. CONCLUSION: The findings of the present study are anticipated to serve as a valuable reference for the implementation of LSP in the food industry. © 2024 Society of Chemical Industry.

3.
J Sci Food Agric ; 104(6): 3665-3675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158728

RESUMO

BACKGROUND: The limited physicochemical properties (such as low foaming and emulsifying capacity) of mung bean protein hydrolysate restrict its application in the food industry. Ultrasound treatment could change the structures of protein hydrolysate to accordingly affect its physicochemical properties. The aim of this study was to investigate the effects of ultrasound treatment on the structural and physicochemical properties of mung bean protein hydrolysate of protamex (MBHP). The structural characteristics of MBHP were evaluated using tricine sodium dodecylsulfate-polyacrylamide gel electrophoresis, laser scattering, fluorescence spectrometry, etc. Solubility, fat absorption capacity and foaming, emulsifying and thermal properties were determined to characterize the physicochemical properties of MBHP. RESULTS: MBHP and ultrasonicated-MBHPs (UT-MBHPs) all contained five main bands of 25.8, 12.1, 5.6, 4.8 and 3.9 kDa, illustrating that ultrasound did not change the subunits of MBHP. Ultrasound treatment increased the contents of α-helix, ß-sheet and random coil and enhanced the intrinsic fluorescence intensity of MBHP, but decreased the content of ß-turn, which demonstrated that ultrasound modified the secondary and tertiary structures of MBHP. UT-MBHPs exhibited higher solubility, foaming capacity and emulsifying properties than MBHP, among which MBHP-330 W had the highest solubility (97.32%), foaming capacity (200%), emulsification activity index (306.96 m2 g-1 ) and emulsion stability index (94.80%) at pH 9.0. CONCLUSION: Ultrasound treatment enhanced the physicochemical properties of MBHP, which could broaden its application as a vital ingredient in the food industry. © 2023 Society of Chemical Industry.


Assuntos
Fabaceae , Vigna , Vigna/química , Hidrolisados de Proteína/química , Proteínas de Plantas/química , Solubilidade
4.
J Sci Food Agric ; 103(11): 5432-5441, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37038905

RESUMO

BACKGROUND: In this study, the fermentation conditions of peony seed soy sauce (PSSS) koji were optimized by response surface method, and the quality components and antioxidant activity of PSSS were investigated at different low-salt solid-state fermentation stages. RESULTS: Results of response surface method showed that the optimal fermentation conditions were 460.6 g kg-1 water content, 48.6 h culture time, 31.5 °C culture temperature and ratio 2.1:1 (w/w) of peony seed meal:wheat bran, with the highest neutral protease activity (2193.78 U g-1 ) of PSSS koji. PSSS had the highest amino acid nitrogen (7.69 g L-1 ), salt-free soluble solids (185.26 g L-1 ), total free amino acids (49.03 g L-1 ), essential free amino acids (19.58 g L-1 ) and umami free amino acids (16.64 g L-1 ) at 20 days of fermentation. The highest total phenolics were 5.414 g gallic acid equivalent L-1 and total flavonoids 0.617 g rutin equivalent L-1 , as well as the highest DPPH radical scavenging activity (86.19%) and reducing power (0.8802, A700 ) of PSSS fermented at 30 days. Sensory evaluation showed that fermentation of 20 days and 25 days could produce a better taste and aroma of PSSS than 15 days and 30 days. CONCLUSION: PSSS had the highest quality components in the middle of fermentation (20 days) and the highest antioxidant activity in the late fermentation period (30 days). These results demonstrated that peony seed meal could be used to produce high-quality soy sauce with high antioxidant activity. © 2023 Society of Chemical Industry.


Assuntos
Paeonia , Alimentos de Soja , Fermentação , Antioxidantes , Paladar , Aminoácidos , Aminoácidos Essenciais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA