Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(4): 709-721, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33735615

RESUMO

The fetal-to-adult hemoglobin switch is regulated in a developmental stage-specific manner and reactivation of fetal hemoglobin (HbF) has therapeutic implications for treatment of ß-thalassemia and sickle cell anemia, two major global health problems. Although significant progress has been made in our understanding of the molecular mechanism of the fetal-to-adult hemoglobin switch, the mechanism of epigenetic regulation of HbF silencing remains to be fully defined. Here, we performed whole-genome bisulfite sequencing and RNA sequencing analysis of the bone marrow-derived GYPA+ erythroid cells from ß-thalassemia-affected individuals with widely varying levels of HbF groups (HbF ≥ 95th percentile or HbF ≤ 5th percentile) to screen epigenetic modulators of HbF and phenotypic diversity of ß-thalassemia. We identified an ETS2 repressor factor encoded by ERF, whose promoter hypermethylation and mRNA downregulation are associated with high HbF levels in ß-thalassemia. We further observed that hypermethylation of the ERF promoter mediated by enrichment of DNMT3A leads to demethylation of γ-globin genes and attenuation of binding of ERF on the HBG promoter and eventually re-activation of HbF in ß-thalassemia. We demonstrated that ERF depletion markedly increased HbF production in human CD34+ erythroid progenitor cells, HUDEP-2 cell lines, and transplanted NCG-Kit-V831M mice. ERF represses γ-globin expression by directly binding to two consensus motifs regulating γ-globin gene expression. Importantly, ERF depletion did not affect maturation of erythroid cells. Identification of alterations in DNA methylation of ERF as a modulator of HbF synthesis opens up therapeutic targets for ß-hemoglobinopathies.


Assuntos
Epigênese Genética , Perfilação da Expressão Gênica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Talassemia beta/genética , gama-Globinas/genética , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Criança , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Hemoglobina Fetal/genética , Edição de Genes , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Sulfitos , Sequenciamento Completo do Genoma , Talassemia beta/patologia
2.
J Environ Manage ; 288: 112454, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33780814

RESUMO

Given that improving urban ecological environment requires a clear recognition of the urban ecological elements, investigating the ecosystem service capabilities of urban green-blue infrastructures (UGBIs) becomes ever important. This study aims to reveal and compare the synergistic ecosystem service ability of UGBIs with different characteristics and the relationship with human demand in Wuhan city. It was found that the climate regulation service and water regulation service value of lake-type parks both reached the highest over the other UGBIs. Nature-type parks revealed the most capable cultural service, and green-type parks demonstrated the greatest exercise cultural service value. The analysis showed that the ecosystem services delivered by the UGBIs were influenced by the park area, the total value of the normalized difference vegetation index and normalized water body index, and the distance from the city centre. Furthermore, a significant spatial phenomenon was found that the ecological capacity of lake-type parks in the city centre was higher than that of the other UGBIs at the same location. Regarding the relationship with the human activity intensity, the high-demand and high-supply regions were mainly concentrated in highly developed areas in terms of regulating services. Nevertheless, a severe environmental inequality occurred in small urban centres, which requires urgent attention from the government. This work answered the question of where and how to optimize the green-blue infrastructures in Wuhan, and it contributes to the construction of the existing blue-green space.


Assuntos
Ecossistema , Parques Recreativos , Cidades , Clima , Meio Ambiente , Humanos
3.
Glob Chang Biol ; 26(4): 2613-2629, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31863618

RESUMO

The effects of nitrogen (N) deposition on soil organic carbon (C) and greenhouse gas (GHG) emissions in terrestrial ecosystems are the main drivers affecting GHG budgets under global climate change. Although many studies have been conducted on this topic, we still have little understanding of how N deposition affects soil C pools and GHG budgets at the global scale. We synthesized a comprehensive dataset of 275 sites from multiple terrestrial ecosystems around the world and quantified the responses of the global soil C pool and GHG fluxes induced by N enrichment. The results showed that the soil organic C concentration and the soil CO2 , CH4 and N2 O emissions increased by an average of 3.7%, 0.3%, 24.3% and 91.3% under N enrichment, respectively, and that the soil CH4 uptake decreased by 6.0%. Furthermore, the percentage increase in N2 O emissions (91.3%) was two times lower than that (215%) reported by Liu and Greaver (Ecology Letters, 2009, 12:1103-1117). There was also greater stimulation of soil C pools (15.70 kg C ha-1  year-1 per kg N ha-1  year-1 ) than previously reported under N deposition globally. The global N deposition results showed that croplands were the largest GHG sources (calculated as CO2 equivalents), followed by wetlands. However, forests and grasslands were two important GHG sinks. Globally, N deposition increased the terrestrial soil C sink by 6.34 Pg CO2 /year. It also increased net soil GHG emissions by 10.20 Pg CO2 -Geq (CO2 equivalents)/year. Therefore, N deposition not only increased the size of the soil C pool but also increased global GHG emissions, as calculated by the global warming potential approach.

4.
BMC Genomics ; 20(1): 770, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646963

RESUMO

BACKGROUND: Host genotype plays a crucial role in microbial composition of laying hens, which may lead to dissimilar odor gas production. The objective of this study was to investigate the relationship among layer breed, microbial structure and odor production. RESULTS: Thirty Hy-Line Gray and thirty Lohmann Pink laying hens were used in this study to determine the impact of cecal microbial structure on odor production of laying hens. The hens were managed under the same husbandry and dietary regimes. Results of in vivo experiments showed a lower hydrogen sulfide (H2S) production from Hy-Line hens and a lower concentration of soluble sulfide (S2-) but a higher concentration of butyrate in the cecal content of the Hy-Line hens compared to Lohmann Pink hens (P < 0.05), which was consistent with the in vitro experiments (P < 0.05). However, ammonia (NH3) production was not different between genotypes (P > 0.05). Significant microbial structural differences existed between the two breed groups. The relative abundance of some butyrate producers (including Butyricicoccus, Butyricimonas and Roseburia) and sulfate-reducing bacteria (including Mailhella and Lawsonia) were found to be significantly correlated with odor production and were shown to be different in the 16S rRNA and PCR data between two breed groups. Furthermore, some bacterial metabolism pathways associated with energy extraction and carbohydrate utilization (oxidative phosphorylation, pyruvate metabolism, energy metabolism, two component system and secretion system) were overrepresented in the Hy-Line hens, while several amino acid metabolism-associated pathways (amino acid related enzymes, arginine and proline metabolism, and alanine-aspartate and glutamate metabolism) were more prevalent in the Lohmann hens. CONCLUSION: The results of this study suggest that genotype of laying hens influence cecal microbiota, which in turn modulates their odor production. Our study provides references for breeding and enteric manipulation for defined microbiota to reduce odor gas emission.


Assuntos
Bactérias/classificação , Ceco/microbiologia , Galinhas/microbiologia , Microbioma Gastrointestinal , Sulfeto de Hidrogênio/metabolismo , Animais , Bactérias/metabolismo , Butiratos , Feminino , Odorantes , RNA Ribossômico 16S/genética
5.
Glob Chang Biol ; 25(6): 2061-2076, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884086

RESUMO

Wetlands contain a large proportion of carbon (C) in the biosphere and partly affect climate by regulating C cycles of terrestrial ecosystems. China contains Asia's largest wetlands, accounting for about 10% of the global wetland area. Although previous studies attempted to estimate C budget in China's wetlands, uncertainties remain. We conducted a synthesis to estimate C uptake and emission of wetland ecosystems in China using a dataset compiled from published literature. The dataset comprised 193 studies, including 370 sites representing coastal, river, lake and marsh wetlands across China. In addition, C stocks of different wetlands in China were estimated using unbiased data from the China Second Wetlands Survey. The results showed that China's wetlands sequestered 16.87 Pg C (315.76 Mg C/ha), accounting for about 3.8% of C stocks in global wetlands. Net ecosystem productivity, jointly determined by gross primary productivity and ecosystem respiration, exhibited annual C sequestration of 120.23 Tg C. China's wetlands had a total gaseous C loss of 173.20 Tg C per year from soils, including 154.26 Tg CO2 -C and 18.94 Tg CH4 -C emissions. Moreover, C stocks, uptakes and gaseous losses varied with wetland types, and were affected by geographic location and climatic factors (precipitation and temperature). Our results provide better estimation of the C budget in China's wetlands and improve understanding of their contribution to the global C cycle in the context of global climate change.


Assuntos
Carbono , Áreas Alagadas , Carbono/análise , Ciclo do Carbono , China , Mudança Climática , Ecossistema , Solo/química
6.
Environ Monit Assess ; 188(5): 273, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27056478

RESUMO

To learn the forest dynamics and evaluate the ecosystem services of forest effectively, a timely acquisition of spatial and quantitative information of forestland is very necessary. Here, a new method was proposed for mapping forest cover changes by combining multi-scale satellite remote-sensing imagery with time series data. Using time series Normalized Difference Vegetation Index products derived from the Moderate Resolution Imaging Spectroradiometer images (MODIS-NDVI) and Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) images as data source, a hierarchy stepwise analysis from coarse scale to fine scale was developed for detecting the forest change area. At the coarse scale, MODIS-NDVI data with 1-km resolution were used to detect the changes in land cover types and a land cover change map was constructed using NDVI values at vegetation growing seasons. At the fine scale, based on the results at the coarse scale, Landsat TM/ETM+ data with 30-m resolution were used to precisely detect the forest change location and forest change trend by analyzing time series forest vegetation indices (IFZ). The method was tested using the data for Hubei Province, China. The MODIS-NDVI data from 2001 to 2012 were used to detect the land cover changes, and the overall accuracy was 94.02 % at the coarse scale. At the fine scale, the available TM/ETM+ images at vegetation growing seasons between 2001 and 2012 were used to locate and verify forest changes in the Three Gorges Reservoir Area, and the overall accuracy was 94.53 %. The accuracy of the two layer hierarchical monitoring results indicated that the multi-scale monitoring method is feasible and reliable.


Assuntos
Monitoramento Ambiental/métodos , Florestas , Imagens de Satélites , China , Ecossistema , Estações do Ano
7.
Medicine (Baltimore) ; 102(26): e34145, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37390270

RESUMO

Using the finite element analysis method to help us better understand the biomechanical changes of the spine after surgery and the changes in the stress distribution around the screw implantation area. The finite element model of L1 vertebral compression fracture was constructed by using a large number of finite element programs. On the fracture model, 2 kinds of internal fixation devices are set up, namely: the first type of 4 screws across the injured vertebra through the adjacent upper and lower vertebrae + transverse connector; the second type of 4 screws crosses the injured vertebra through the adjacent upper and lower vertebrae + non-transverse connector. To study the distribution of the maximum displacement and von Mises stress of the intramedullary pedicle screws and rods of the 2 types of internal fixation devices after implantation in the spine under certain loading conditions. In traditional open pedicle screw fixation, the maximum stress in the pedicle screw fixation system in the direction of 3D movement is higher than in percutaneous pedicle screw fixation. There is no significant difference in the Von Mises stress of the pedicle screw between the 2 procedures when the spine performs flexion-extension and lateral flexion activities. When the spine is rotating axially, the Von Mises stress of the pedicle screw in conventional open surgery is significantly less than that of the screw in percutaneous pedicle screw fixation. Traditional open internal fixation produces stress peaks of 891.7 MPa and 886.34 MPa at the transverse joint during axial rotation. Only when the spine is rotating in the axial direction, the maximum displacement of traditional open pedicle screw fixation is smaller than that of percutaneous pedicle screw fixation. There is no significant difference in the maximum displacement between the 2 procedures when the spine is moving in other directions. Traditional open pedicle screw fixation can strengthen the stability of the spine in the direction of axial rotation, and can also be greater to reduce the maximum stress of the pedicle screw axial rotation, so the clinical treatment of unstable fractures of the thoracolumbar spine instability is of great significance.


Assuntos
Fraturas por Compressão , Parafusos Pediculares , Fraturas da Coluna Vertebral , Humanos , Fraturas da Coluna Vertebral/cirurgia , Análise de Elementos Finitos , Fraturas por Compressão/cirurgia , Coluna Vertebral
8.
Artigo em Inglês | MEDLINE | ID: mdl-36554970

RESUMO

With the widespread recognition and in-depth implementation of the Belt and Road Initiative (BRI), especially in the context of global climate change, the ecological environment of Belt and Road Initiative regions might be confronted with pressures and challenges with rapid socioeconomic development. In response to those potential environmental challenges, China has put forward Green BRI and enriched the new Silk Road with more environmental connotations, aiming to reduce the conflict between economic development and eco-environmental protection. Currently, there is a lack of systematic and holistic research on eco-environmental issues in BRI regions. In addition, feasible solutions to enhance BRI's contribution to the eco-environment remain insufficient. Having systematically reviewed the relevant literature on the eco-environment in BRI regions, we found that most regions along the BRI routes are in sensitive zones of climate and geological change, with fragile eco-environments and strong vulnerability to climate change, natural disasters and human activities. The main eco-environment status of the BRI regions is as follows: (1) The total water resources in BRI regions account for only 36% of the global total, with uneven distribution and complex spatial precipitation, posing higher pressure on water security. (2) Vegetation varies significantly from region to region. The vegetation in South Asia is the richest, with its mean annual NDVI exceeding 0.7. The NDVI in East Europe, Russia and South China are between 0.4 and 0.7, and that in Central Asia and West Asia are below 0.2. (3) The BRI regions are abundantly blessed with natural resources, with the total recoverable oil reserves, natural gas reserves and the total mining area reaching 66%, 65.5% and 42.31% of the world's total, respectively, but severe overexploitation and overconsumption of those resources degrade their eco-environment. Accordingly, future research directions, such as target on integrated, interdisciplinary and coordinated studies on eco-environmental issues in BRI regions, are proposed in this paper to achieve optimization of BRI's contribution to eco-environment protection in BRI regions.


Assuntos
Conservação dos Recursos Naturais , Desastres Naturais , Humanos , China , Desenvolvimento Econômico , Federação Russa
9.
Artigo em Inglês | MEDLINE | ID: mdl-35627380

RESUMO

The "Belt and Road" Initiative (BRI), i.e., the official Chinese term for the "Silk Road Economic Belt" and the "21st Century Maritime Silk Road", was proposed to share China's development opportunities with BRI-related countries and achieve common prosperity. Though the BRI itself conveys rich social and economic connotations, ecosystem health and the environmental problems in the Belt and Road regions are scientific issues. In this study, papers relating to the ecological issues of the BRI between January 2013 and December 2021 were collected and analyzed via CiteSpace. We found that some ecological issues were involved with the environmental challenges posed by the BRI, whereas others were, to a certain extent, subjective assumptions. Accordingly, we identified and classified the limitations and constraints of those environmental views about the BRI. By emphasizing that scientific data is key to explaining the ecological problems, we advanced four prospects for ecosystem health and environmental geography studies in the Belt and Road regions: (1) Spatial analysis and monitoring technology for the environment; (2) Clarification of the characteristics and mechanisms of the ecosystem and environments; (3) A focus on the interaction between the economy and the environment; (4) Specific and targeted strategies and solutions to different environmental problems.


Assuntos
Desenvolvimento Econômico , Ecossistema , Geografia
10.
Artigo em Inglês | MEDLINE | ID: mdl-35329281

RESUMO

Habitat quality is an important indicator for assessing biodiversity and is critical to ecosystem processes. With urban development and construction in developing countries, habitat quality is increasingly influenced by landscape pattern changes. This has made habitat conservation to be an increasingly urgent issue. Despite the growing interest in this issue, studies that reveal the role of land use change in habitat degradation at multiple scales are still lacking. Therefore, we analyzed the spatial and temporal variations of habitat quality of the Three Gorges Reservoir area by the InVEST habitat quality model and demonstrated the responses of habitat quality to various landscape dynamics by correspondence analysis. The result showed that the habitat quality score of this area increased from 0.685 in 2000 to 0.739 in 2015 and presented a significant spatial heterogeneity. Habitat quality was significantly higher in the northeastern and southwestern parts of the reservoir area than in other regions. Meanwhile, habitat quality improved with altitude and slope, and increased for all altitude and slope zones. The habitat quality of >1000 m and >25° zone exceeds 0.8, while the habitat quality of <500 m and <15° zone is less than 0.6. Habitat quality significantly varied among landscape dynamics and was extremely sensitive to vegetation recovery and urban expansion. The vegetation restoration model of returning farmland to forest is difficult to sustain, so we suggest changing the vegetation recovery model to constructing complex vegetation community. This study helps us to better understand the effects of landscape pattern changes on habitat quality and can provide a scientific basis for formulating regional ecological conservation policies and sustainable use of land resources.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , China , Florestas
11.
Sci Total Environ ; 821: 153403, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35101503

RESUMO

The UN Decade on Ecosystem Restoration is focussing attention and resources on restoration globally. Nowhere is this more crucial than in tropical forests that harbor immense biodiversity, but have also undergone widespread deforestation over the past few decades. We performed a meta-analysis to investigate how biodiversity features respond to forest restoration across the Brazilian Atlantic Forest (BAF), one of the most threatened biodiversity hotspots in the world. We assembled biodiversity in different metrics of structure and diversity features of three taxonomic groups (vascular plants, soil microorganisms, and invertebrates), generating a dataset with 2370 observations from 76 primary studies. We quantified the incomplete recovery of biodiversity (i.e., the rate of recovery to a pre-disturbance state) occurring during the restoration process, which we called the 'recovery gap'. Our results revealed that forests undergoing restoration in the BAF show a recovery gap of 34% for structure features and 22% for diversity features in comparison to reference reforests, considering all taxonomic groups investigated. For vascular plants, soil microorganisms, and invertebrates the recovery gap ranged between 46 and 47%, 16-26%, and 4-7%, respectively. Overall, the recovery gap was influenced by the interaction of restoration actions (i.e., the past land use, restoration age and restoration approach - active and passive restoration), however, structure features responded more sensitively to the time elapsed since restoration started, while the recovery gap for diversity features depended more on the past land-use. Our study can help guide the prioritization of the aforenamed taxonomic groups in restoration, the regulation of potential biodiversity offsetting policies in the BAF, and understanding how coupled biodiversity features respond to the interaction of environmental conditions and restoration actions in a high fragmented tropical landscape.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Florestas , Solo
12.
Artigo em Inglês | MEDLINE | ID: mdl-34948624

RESUMO

Rapid urbanization and industrialization and enhanced ecological protection measures have greatly influenced landscape change, which has exacerbated regional landscape competition and conflicts and indirectly affected the supply of ecosystem services. Clarifying the relationship between ecosystem service change and landscape change is useful for understanding the impact of ecosystem conversion on socio-economic development and providing a knowledge base for relevant policy decisions. In this study, we used remote sensing technology to process Landsat TM/ETM+/OLI imageries, combined with transformation analysis and kernel density analysis to study the spatial and temporal characteristics of land use change in Wuhan City from 1980 to 2020. We also estimated the ESV in the region using the improved unit area value equivalent method to reveal the trends of ESV changes in Wuhan. The results showed that land use changes in Wuhan during 1980-2020 occurred mainly in terms of decreases in farmland, forestland, and bare land, as well as increases in built-up land and water bodies. The built-up land was mainly concentrated in the main urban areas, but its area in each suburban area has increased in recent years. In contrast, farmland was mainly distributed in suburban areas, and its area has been decreasing in recent years due to the impact of urban expansion. However, the reduction is compensated for by the reclamation of ecological land such as grassland and forestland, which has aggravated the loss of ecosystem service values in the study area. In addition, human activities such as urban expansion have increased the demand for water resources, while also leading to ecological problems such as water scarcity and water quality degradation, which have caused serious losses to key ecosystem services in Wuhan city. Therefore, in order to alleviate the competition and conflicts in the landscape and mitigate the loss of ecosystem service values in this area, we have proposed some constructive suggestions for future urban planning and water quality improvements in Wuhan. The focus of these suggestions is on controlling the expansion of built-up land, as well as the conservation of ecological land and resource protection. Meanwhile, our findings can also provide reference information for land resource planning and ecological monitoring, and help researchers to understand the contribution of ecosystem service functions in relation to socio-economic development.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Cidades , Humanos , Urbanização
13.
Artigo em Inglês | MEDLINE | ID: mdl-34770130

RESUMO

In a climate and land use change context, the sequestration of atmospheric carbon in urban agglomeration is key to achieving carbon emission and neutrality targets. It is thus critical to understand how various climate and land use changes impact overall carbon sequestration in large-scale city circle areas. As the largest urban agglomeration in central China, carbon dynamics in the Wuhan City Circle area have been deeply affected by rapid urbanization and climate change in the past two decades. Here, we applied monthly climate data, spatially explicit land use maps, NDVI (Normalized Difference Vegetation Index) images and the CASA (Carnegie-Ames-Stanford Approach) model to estimate the spatial and temporal changes of carbon dynamics in the Wuhan City Circle area from 2000 to 2015. We designed six different scenarios to analyze the effects of climate change and land use change on carbon dynamics. Our simulation of NPP (Net Primary Productivity) increased from 522.63 gC × m-2 to 615.82 gC × m-2 in the Wuhan City Circle area during 2000-2015. Climate change and land use change contributed to total carbon sequestration by -73.3 × 1010 gC and 480 × 1010 gC, respectively. Both precipitation and temperature had a negative effect on carbon sequestration, while radiation had a positive effect. In addition, the positive effect on carbon sequestration from afforestation was almost equal to the negative effect from urbanization between 2000 and 2015. Importantly, these findings highlight the possibility of carrying out both rapid urbanization and ecological restoration simultaneously.


Assuntos
Mudança Climática , Ecossistema , Carbono , China , Cidades , Urbanização
14.
Artigo em Inglês | MEDLINE | ID: mdl-34948642

RESUMO

Urbanization has become one of the hot issues of global sustainable development, and is mainly characterized by urban population growth and construction land expansion. However, the inharmonious development of urban expansion and population migration has brought serious challenges to urban planning and management. China is the largest developing country in the world, and the urbanization process has accelerated over the past decades. In this paper, decoupling analysis was used to demonstrate the spatio-temporal relationship between urban expansion and population growth in 321 prefecture-level cities in China, providing a reference basis for sustainable development. The results showed that China's population, total GDP, and construction land area increased from 1990 to 2018. The rate of construction land expansion was larger in the eastern coastal and western regions than in the northeastern and central regions, but the population growth rate was not significantly different among these regions. According to the decoupling analysis, the relationships of population-GDP, construction land-GDP, and population-construction land were mainly weak decoupling, indicating that both the population growth and the construction land expansion lagged behind the economic development, and the population growth lagged behind construction land expansion. In addition, the results were analyzed based on China's four economic regions. Population and construction land area changes in the northeastern provinces experienced a shift from weak decoupling to expansive negative decoupling, then presented a strong decoupling. The decoupling state of population-construction land in the west region was relatively stable. The relationship between population and construction land in the central regions was mainly weak decoupling, and some cities developed into strong decoupling. The relationship between population and construction land in the east region experienced a shift from strong decoupling to weak decoupling, then demonstrated expansive negative decoupling, mainly manifested in the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta urban agglomerations. Therefore, the northeast region should take measures to promote regional population growth while reasonably controlling the expansion of construction land, the west region should focus on ecological protection and moderately attract population, the central region should control their population development and reasonably allocate land, and the east region should pay attention to and solve the citizenship problem of migrant workers in second-tier and third-tier cities when promoting new urbanization.


Assuntos
Cidadania , Crescimento Demográfico , China , Cidades , Desenvolvimento Econômico , Humanos , População Urbana , Urbanização
15.
Artigo em Inglês | MEDLINE | ID: mdl-34444106

RESUMO

Spatio-temporal variations of recreation service not only could help to understand the impact of cultural services on human well-being but also provides theoretical and technical support for regional landscape management. However, previous studies have avoided deeply quantifying and analyzing it or have simply focused on assessing recreational service at a single period in time. In this study, we used the InVEST model to evaluate the spatio-temporal variations of recreation service in the Three Gorges Reservoir Area and demonstrated the impact of recreation service on landscape dynamics. The results demonstrated that recreation service increased significantly and presented a significant spatial heterogeneity. Although afforestation and urban expansion both could significantly increase recreation service, the recreation service proxy of the non-vegetation landscape is far higher than that of the vegetation landscape. This finding indicated that human landscape is more attractive to tourists than the natural landscape, so we recommend to strengthen the infrastructure construction for enhancing the accessibility of natural landscapes. Moreover, we propose other constructive suggestions and landscape-design solutions for promoting recreation service. This study shifted the static environmental health assessment to the analysis of recreation service dynamics, bridging the regulatory mechanisms of ecosystem services involved in cultural services.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , China , Humanos , Recreação
16.
Environ Sci Pollut Res Int ; 28(12): 15274-15289, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33236300

RESUMO

Global change significantly influences plant leaf gas exchange, which affects the carbon-water cycle of terrestrial ecosystems. However, the magnitudes of the effects of multiple global change factors on leaf gas exchanges are currently lacking. Therefore, a global meta-analysis of 337 published articles was conducted to determine the effects of elevated CO2 (eCO2), elevated O3 (eO3), elevated temperature (eT), and drought on plant leaf gas exchanges. The results indicated that (1) the overall responses of photosynthesis rate (Pn) and instantaneous water use efficiency (WUEi) to eCO2 increased by 28.6% and 58.6%. But transpiration rate (Tr) and stomatal conductance (gs) responded negatively to eCO2 (- 17.5% and - 17.2%, respectively). Furthermore, all Pn, gs, and WUEi responded negatively to eO3 (- 32.7%, - 24.6%, and - 27.1%), eT (- 23.2%, - 10.8%, and - 28.9%), and drought (- 53.6%, - 59.3%, and - 4.6%, respectively), regardless of functional groups and various complex experimental conditions. (2) Elevated CO2 increased WUEi combined with eO3, eT, and drought (26.6%, 36.0%, and 58.6%, respectively, for eCO2 + eO3, eCO2 + eT, and eCO2 + drought) and mitigated their negative impacts on Pn to some extent. (3) Plant form and foliage type play an important role in the responses of leaf gas exchanges. Trees responded mostly to eCO2, but responded least to eT in Pn, Tr, gs, and WUEi compared with shrubs and herbs. Evergreen broad-leaved species were more responsive to eCO2 and drought. (4) The stress level of each factor can also significantly influence the responses of leaf gas exchanges to environment change. Hopefully, the quantitative results are helpful for the further assessments of the terrestrial carbon-water cycle.


Assuntos
Dióxido de Carbono , Secas , Ecossistema , Fotossíntese , Folhas de Planta , Temperatura , Água
17.
Environ Pollut ; 274: 116562, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545525

RESUMO

Bacillus coagulans is regarded as a clean, safe and helpful probiotic additive in the production of livestock and poultry breeds. Some studies have also shown that Bacillus coagulans can adsorb heavy metals in water, even in the gut of animals. However, whether Bacillus coagulans feeding influences antibiotic resistance gene (ARG) abundance in the gut of lead-exposed laying hens is unknown. To better apply such probiotics in the breeding industry, the present study employed Bacillus coagulans R11 and laying hens in model experiments to test ARG changes in the cecum of laying hens under lead exposure and B. coagulans R11 feeding. The results showed that there was the trend for ARG abundance decreasing in feeding B. coagulans R11 without lead exposure to laying hens in the cecum; however, feeding B. coagulans R11 to laying hens exposed to lead obviously increased the abundances of aminoglycoside and chloramphenicol ARGs. Further experiment found that hydroquinone, dodecanedioic acid, gibberellin A14, alpha-solanine, jasmonic acid and chitin were involved in the abundances of ARGs in the cecum, in addition the abundances of these compounds were also significantly enhanced by lead exposure or combination effects of lead and B. coagulans R11. As a result, the ARG hazards increased with feeding B. coagulans R11 to laying hens exposed to lead, and the key compounds which influenced by the combination effects of lead and B. coagulans R11 might influence the ARGs abundance.


Assuntos
Bacillus coagulans , Animais , Antibacterianos , Ceco , Galinhas , Resistência Microbiana a Medicamentos , Feminino
18.
Microbiome ; 9(1): 177, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433492

RESUMO

BACKGROUND: The microbiota in the cecum of laying hens is crucial for host digestion, metabolism, and odor gas production. The results of recent studies have suggested that host microRNAs (miRNAs) can regulate gene expression of the gut microbiota. In the present study, the expression profiles of host-derived miRNAs in the cecal content of two laying hen breeds; Hy-line Gray and Lohmann Pink, which have dissimilar H2S production, were characterized; and their effects on H2S production by regulating the expression of gut microbiota-associated genes were demonstrated. RESULTS: The differential expression of microbial serine O-acetyltransferase, methionine synthase, aspartate aminotransferase, methionine-gamma-lyase, and adenylylsulfate kinase between the two hen breeds resulted in lower H2S production in the Hy-line hens. The results also revealed the presence of miRNA exosomes in the cecal content of laying hens, and an analysis of potential miRNA-target relationships between 9 differentially expressed miRNAs and 9 differentially expressed microbial genes related to H2S production identified two methionine synthase genes, Odosp_3416 and BF9343_2953, that are targeted by gga-miR-222a. Interestingly, in vitro fermentation results showed that gga-miR-222a upregulates the expression of these genes, which increased methionine concentrations but decreased H2S production and soluble sulfide concentrations, indicating the potential of host-derived gga-miR-222a to reduce H2S emission in laying hens. CONCLUSION: The findings of the present study reveal both a physiological role by which miRNAs shape the cecal microbiota of laying hens and a strategy to use host miRNAs to manipulate the microbiome and actively express key microbial genes to reduce H2S emissions and breed environmentally friendly laying hens. Video Abstract.


Assuntos
Galinhas , MicroRNAs , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase , Animais , Bactérias/genética , Ceco , Galinhas/genética , Feminino , MicroRNAs/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-33147838

RESUMO

Land use planning usually increases the uncertainties of the ecosystem structures and functions because various human demands usually bring both positive and negative ecological effects. It is critical for estimating various land use changes and their ecological effects, but the previous studies have failed to decouple the respective and the combined effects of different land use changes on ecosystem services. Net primary productivity (NPP) could be used to indicate many ecosystem services such as carbon sequestration and storage. Here, we employed a light use efficiency model to estimate the spatial and temporal dynamics of NPP in the Three Gorges Reservoir (TGR) area from 2000 to 2015, and designed four scenarios to analyze the relative roles of afforestation, urbanization and storing water on NPP dynamics. Our results documented that terrestrial NPP of the TGR area increased from 547.40 gC•m-2 to 629.96 gC•m-2, and carbon sequestration capacities were 31.66 TgC (1Tg = 1012g) and 36.79 TgC in 2000 and 2015, respectively. Climate change and land use change both could contribute to carbon sequestration with 4.08 TgC and 1.05 TgC. Among these land use changes, only afforestation could sequester carbon with 2.04 TgC, while urbanization-induced and impoundment-induced emissions were 0.12 TgC and 0.32 TgC, respectively, and other land use changes also could release 0.55 TgC of carbon. This finding suggested that although positive and negative environmental effects happened simultaneously over the past decades, green infrastructure could effectively offset the carbon emissions from urbanization and storing water in the TGR area, which provides some fundamental supports for further ecological restoration and contributes to empowering land use policies towards carbon sequestration and storage at the regional scale.


Assuntos
Ecossistema , Urbanização , Abastecimento de Água , China , Mudança Climática , Humanos , Água
20.
Environ Int ; 143: 105897, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615347

RESUMO

The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log10 (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (blaTEM, ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater.


Assuntos
Antibacterianos , Purificação da Água , Animais , Antibacterianos/farmacologia , Bactérias/genética , China , Resistência Microbiana a Medicamentos/genética , Fazendas , Genes Bacterianos/genética , Suínos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA