Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 47(12): 4581-4610, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29682652

RESUMO

The rapid development of solar cells (SCs) based on organic-inorganic hybrid metal triiodide perovskite (MTP) materials holds great promise for next-generation photovoltaic devices. The demonstrated power conversion efficiency of the SCs based on MTP (PSCs for short) has reached over 20%. An MTP material is a kind of soft ionic solid semiconductor. The intrinsic optoelectronic properties of MTP are greatly determined by several factors, such as the crystalline phase, doping type, impurities, elemental composition, and defects in its crystal structure. In the development of PSCs, a good understanding and smart engineering of the defects in MTP have been demonstrated to be a key factor for the fabrication of high-efficiency PSCs. In this review, we start with a brief introduction to the types of defects and the mechanisms for their formation in MTP. Then, the positive and negative impacts of defects on the important optoelectronic features of MTP are presented. The optoelectronic properties mainly include charge recombination, charge transport, ion migration, and structural stability. Moreover, commonly used techniques for the characterization of the defects in MTP are systematically summarized. Recent progress on the state-of-the-art defect engineering approaches for the optimization of PSC devices is also summarized, and we also provide some perspectives on the development of high-efficiency PSCs with long-term stability through the optimization of the defects in MTP.

2.
ACS Appl Mater Interfaces ; 12(22): 24726-24736, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32374149

RESUMO

Suitable intercalation cathodes and fundamental insights into the Zn-ion storage mechanism are the crucial factors for the booming development of aqueous zinc-ion batteries. Herein, a novel nickel vanadium oxide hydrate (Ni0.25V2O5·0.88H2O) is synthesized and investigated as a high-performance electrode material, which delivers a reversible capacity of 418 mA h g-1 with 155 mA h g-1 retained at 20 A g-1 and a high capacity of 293 mA h g-1 in long-term cycling at 10 A g-1 with 77% retention after 10,000 cycles. More importantly, multistep phase transition and chemical-state change during intercalation/deintercalation of hydrated Zn2+ are illustrated in detail via in situ/ex situ analytical techniques to unveil the Zn2+ storage mechanism of the hydrated and layered vanadium oxide bronze. Furthermore, morphological development from nanobelts to hierarchical structures during rapid ion insertion and extraction is demonstrated and a self-hierarchical process is correspondingly proposed. The unique evolutions of structure and morphology, together with consequent fast Zn2+ transport kinetics, are of significance to the outstanding zinc storage capacity, which would enlighten the mechanism exploration of the aqueous rechargeable batteries and push development of vanadium-based cathode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA