Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7981): 139-148, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704724

RESUMO

Aphids transmit viruses and are destructive crop pests1. Plants that have been attacked by aphids release volatile compounds to elicit airborne defence (AD) in neighbouring plants2-5. However, the mechanism underlying AD is unclear. Here we reveal that methyl-salicylate (MeSA), salicylic acid-binding protein-2 (SABP2), the transcription factor NAC2 and salicylic acid-carboxylmethyltransferase-1 (SAMT1) form a signalling circuit to mediate AD against aphids and viruses. Airborne MeSA is perceived and converted into salicylic acid by SABP2 in neighbouring plants. Salicylic acid then causes a signal transduction cascade to activate the NAC2-SAMT1 module for MeSA biosynthesis to induce plant anti-aphid immunity and reduce virus transmission. To counteract this, some aphid-transmitted viruses encode helicase-containing proteins to suppress AD by interacting with NAC2 to subcellularly relocalize and destabilize NAC2. As a consequence, plants become less repellent to aphids, and more suitable for aphid survival, infestation and viral transmission. Our findings uncover the mechanistic basis of AD and an aphid-virus co-evolutionary mutualism, demonstrating AD as a potential bioinspired strategy to control aphids and viruses.


Assuntos
Ar , Afídeos , Doenças das Plantas , Plantas , Ácido Salicílico , Transdução de Sinais , Afídeos/fisiologia , Afídeos/virologia , Interações entre Hospedeiro e Microrganismos , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/parasitologia , Plantas/virologia , Ácido Salicílico/metabolismo , Simbiose , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Nicotiana/virologia , Proteínas Virais/metabolismo , Animais
2.
Mol Cell ; 77(4): 734-747.e7, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31812350

RESUMO

Mutation and prevalence of pathogenic viruses prompt the development of broad-spectrum antiviral strategies. Viperin is a potent antiviral protein that inhibits a broad range of viruses. Unexpectedly, we found that Viperin protein production in epithelium is defective in response to both viruses and interferons (IFNs). We further revealed that viruses and IFNs stimulate expression of the acetyltransferase HAT1, which induces Lys197-acetylation on Viperin. Viperin acetylation in turn recruits UBE4A that stimulates K6-linked polyubiquitination at Lys206 of Viperin, leading to Viperin protein degradation. Importantly, UBE4A deficiency restores Viperin protein production in epithelium. We then designed interfering peptides (IPs) to inhibit UBE4A binding with Viperin. We found that VIP-IP3 rescues Viperin protein production in epithelium and therefore enhances cellular antiviral activity. VIP-IP3 renders mice more resistant to viral infection. These findings could provide strategies for both enhancing host broad-spectrum antiviral response and improving the efficacy of IFN-based antiviral therapy.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/virologia , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Linhagem Celular , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Humanos , Interferons/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Peptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação
3.
J Am Chem Soc ; 146(22): 15576-15586, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38753821

RESUMO

Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.

4.
Small ; 20(32): e2400551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38516940

RESUMO

Electrocatalytic nitrogen reduction technology seamlessly aligns with the principles of environmentally friendly chemical production. In this paper, a comprehensive review of recent advancements in electrocatalytic NH3 synthesis utilizing single-atom catalysts (SACs) is offered. Into the research and applications of three categories of SACs: noble metals (Ru, Au, Rh, Ag), transition metals (Fe, Mo, Cr, Co, Sn, Y, Nb), and nonmetallic catalysts (B) in the context of electrocatalytic ammonia synthesis is delved. In-depth insights into the material preparation methods, single-atom coordination patterns, and the characteristics of the nitrogen reduction reaction (NRR) are provided. The systematic comparison of the nitrogen reduction capabilities of various SAC types offers a comprehensive research framework for their integration into electrocatalytic NRR. Additionally, the challenges, potential solutions, and future prospects of incorporating SACs into electrocatalytic nitrogen reduction endeavors are discussed.

5.
Chembiochem ; : e202400261, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819577

RESUMO

Autophagy is an important biological mechanism for eukaryotic cells to regulate growth, death, and energy metabolism, and plays an important role in removing damaged organelles, misfolded or aggregated proteins, and clearing pathogens. It has been found that autophagy is closely related to cell survival and death, and is of great significance in cancerigenesis and development, playing a bidirectional role in cancer inhibition and cancer promotion. Therefore, treating cancers by regulating autophagy has attracted much attention. A large amount of research evidence indicates that polymeric nanomaterials are able to regulate cellular autophagy, and their good biocompatibility, degradability, and functionalizable modification open up a broad application prospect for improving the therapeutic effect of cancers. This review provides an overview of the research progress of polymeric nanomaterials for modulating autophagy in the treatment of cancers.

6.
J Virol ; 97(10): e0078623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796126

RESUMO

IMPORTANCE: EV71 poses a significant health threat to children aged 5 and below. The process of EV71 infection and replication is predominantly influenced by ubiquitination modifications. Our previous findings indicate that EV71 prompts the activation of host deubiquitinating enzymes, thereby impeding the host interferon signaling pathway as a means of evading the immune response. Nevertheless, the precise mechanisms by which the host employs ubiquitination modifications to hinder EV71 infection remain unclear. The present study demonstrated that the nonstructural protein 2Apro, which is encoded by EV71, exhibits ubiquitination and degradation mediated by the host E3 ubiquitin ligase SPOP. In addition, it is the first report, to our knowledge, that SPOP is involved in the host antiviral response.


Assuntos
Cisteína Endopeptidases , Enterovirus Humano A , Infecções por Enterovirus , Interações entre Hospedeiro e Microrganismos , Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitinação , Proteínas Virais , Criança , Humanos , Enterovirus Humano A/enzimologia , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo , Cisteína Endopeptidases/metabolismo
7.
Magn Reson Med ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044654

RESUMO

PURPOSE: To demonstrate magnetization transfer (MT) effects with low specific absorption rate (SAR) on ultra-low-field (ULF) MRI. METHODS: MT imaging was implemented by using sinc-modulated RF pulse train (SPT) modules to provide bilateral off-resonance irradiation. They were incorporated into 3D gradient echo (GRE) and fast spin echo (FSE) protocols on a shielding-free 0.055T head scanner. MT effects were first verified using phantoms. Brain MT imaging was conducted in both healthy subjects and patients. RESULTS: MT effects were clearly observed in phantoms using six SPT modules with total flip angle 3600° at central primary saturation bands of approximate offset ±786 Hz, even in the presence of large relative B0 inhomogeneity. For brain, strong MT effects were observed in gray matter, white matter, and muscle in 3D GRE and FSE imaging using six and sixteen SPT modules with total flip angle 3600° and 9600°, respectively. Fat, cerebrospinal fluid, and blood exhibited relatively weak MT effects. MT preparation enhanced tissue contrasts in T2-weighted and FLAIR-like images, and improved brain lesion delineation. The estimated MT SAR was 0.0024 and 0.0008 W/kg for two protocols, respectively, which is far below the US Food and Drug Administration (FDA) limit of 3.0 W/kg. CONCLUSION: Robust MT effects can be readily obtained at ULF with extremely low SAR, despite poor relative B0 homogeneity in ppm. This unique advantage enables flexible MT pulse design and implementation on low-cost ULF MRI platforms to achieve strong MT effects in brain and beyond, potentially augmenting their clinical utility in the future.

8.
J Bioenerg Biomembr ; 56(3): 285-296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517565

RESUMO

Acute kidney injury (AKI) is a serious complication of sepsis patients, but the pathogenic mechanisms underlying AKI are still largely unclear. In this view, the roles of the key component of N6-methyladenosine (m6A)-wilms tumor 1 associated protein (WTAP) in AKI progression were investigated. AKI mice model was established by using cecal ligation and puncture (CLP). AKI cell model was established by treating HK-2 cells with LPS. Cell apoptosis was analyzed by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometry analysis. Cell viability was analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The concentrations of inflammatory factors were examined with ELISA kits. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and Fe2+ levels were detected with related kits. Gene expression was detected by western blot assay or quantitative real-time polymerase chain reaction (qRT-PCR) assay. The relation between WTAP and lamin B1 (LMNB1) was verified by Methylated RNA Immunoprecipitation (meRIP) assay, RIP assay, dual-luciferase reporter assay and Actinomycin D assay. CLP induced significant pathological changes in kidney tissues in mice and promoted inflammation, mitochondrial damage and ferroptosis. LMNB1 level was induced in HK-2 cells by LPS. LMNB1 knockdown promoted LPS-mediated HK-2 cell viability and inhibited LPS-mediated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis. Then, WTAP was demonstrated to promote LMNB1 expression by m6A Methylation modification. Moreover, WTAP knockdown repressed LPS-treated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis, while LMNB1 overexpression reversed the effects. Additionally, WTAP affected the pathways of NF-κB and JAK2/STAT3 by LMNB1. WTAP-mediated m6A promoted the inflammation, mitochondrial damage and ferroptosis in LPS-induced HK-2 cells by regulating LMNB1 expression and activating NF-κB and JAK2/STAT3 pathways.


Assuntos
Injúria Renal Aguda , Adenosina , Ferroptose , Inflamação , Janus Quinase 2 , NF-kappa B , Animais , Humanos , Masculino , Camundongos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Inflamação/metabolismo , Inflamação/patologia , Janus Quinase 2/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NF-kappa B/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo
9.
Opt Lett ; 49(6): 1425-1428, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489416

RESUMO

Terahertz cross correlation spectroscopy (THz-CCS) systems using broadband incoherent light as the pumping source have received increasing attention from researchers in recent years. However, a comprehensive and in-depth understanding of THz-CCS is still needed to obtain a detailed optimization scheme. Here we systematically investigate the influences of the detection parameters, light propagation process, and pump source on the CCS signals. The impacts of the filter slopes and time constants in lock-in detection are revealed for optimizing the signal-to-noise ratio and bandwidth of the THz signal. By varying the optical fiber length and dispersion coefficient, the dispersion insensitivity of THz-CCS was experimentally demonstrated. The comparison of different pump sources (SLD and ASE) shows that the over-wide and non-flat pump spectrum may attenuate the CCS signal because of the energy waste brought by the photomixing process under the limited bandwidth of the photomixer. Our research may lead to a deeper understanding and further optimization of the THz-CCS system, which will promote the development and widespread application of what is to the best of our knowledge a new technique.

10.
J Magn Reson Imaging ; 60(3): 1165-1175, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38149750

RESUMO

BACKGROUND: Cerebral microbleeds (CMB) are indicators of severe cerebral small vessel disease (CSVD) that can be identified through hemosiderin-sensitive sequences in MRI. Specifically, quantitative susceptibility mapping (QSM) and deep learning were applied to detect CMBs in MRI. PURPOSE: To automatically detect CMB on QSM, we proposed a two-stage deep learning pipeline. STUDY TYPE: Retrospective. SUBJECTS: A total number of 1843 CMBs from 393 patients (69 ± 12) with cerebral small vessel disease were included in this study. Seventy-eight subjects (70 ± 13) were used as external testing. FIELD STRENGTH/SEQUENCE: 3 T/QSM. ASSESSMENT: The proposed pipeline consisted of two stages. In stage I, 2.5D fast radial symmetry transform (FRST) algorithm along with a one-layer convolutional network was used to identify CMB candidate regions in QSM images. In stage II, the V-Net was utilized to reduce false positives. The V-Net was trained using CMB and non CMB labels, which allowed for high-level feature extraction and differentiation between CMBs and CMB mimics like vessels. The location of CMB was assessed according to the microbleeds anatomical rating scale (MARS) system. STATISTICAL TESTS: The sensitivity and positive predicative value (PPV) were reported to evaluate the performance of the model. The number of false positive per subject was presented. RESULTS: Our pipeline demonstrated high sensitivities of up to 94.9% at stage I and 93.5% at stage II. The overall sensitivity was 88.9%, and the false positive rate per subject was 2.87. With respect to MARS, sensitivities of above 85% were observed for nine different brain regions. DATA CONCLUSION: We have presented a deep learning pipeline for detecting CMB in the CSVD cohort, along with a semi-automated MARS scoring system using the proposed method. Our results demonstrated the successful application of deep learning for CMB detection on QSM and outperformed previous handcrafted methods. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Assuntos
Hemorragia Cerebral , Doenças de Pequenos Vasos Cerebrais , Aprendizado Profundo , Imageamento por Ressonância Magnética , Humanos , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Masculino , Feminino , Imageamento por Ressonância Magnética/métodos , Idoso , Estudos Retrospectivos , Hemorragia Cerebral/diagnóstico por imagem , Pessoa de Meia-Idade , Algoritmos , Encéfalo/diagnóstico por imagem , Sensibilidade e Especificidade , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
11.
EMBO Rep ; 23(1): e53466, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34779558

RESUMO

High-salt diets have recently been implicated in hypertension, cardiovascular disease, and autoimmune disease. However, whether and how dietary salt affects host antiviral response remain elusive. Here, we report that high salt induces an instant reduction in host antiviral immunity, although this effect is compromised during a long-term high-salt diet. Further studies reveal that high salt stimulates the acetylation at Lys663 of p97, which promotes the recruitment of ubiquitinated proteins for proteasome-dependent degradation. p97-mediated degradation of the deubiquitinase USP33 results in a deficiency of Viperin protein expression during viral infection, which substantially attenuates host antiviral ability. Importantly, switching to a low-salt diet during viral infection significantly enhances Viperin expression and improves host antiviral ability. These findings uncover dietary salt-induced regulation of ubiquitinated cellular proteins and host antiviral immunity, and could offer insight into the daily consumption of salt-containing diets during virus epidemics.


Assuntos
Fatores de Restrição Antivirais/imunologia , Imunidade Inata/efeitos dos fármacos , Cloreto de Sódio na Dieta/efeitos adversos , Viroses , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Ubiquitina Tiolesterase , Ubiquitinação , Viroses/imunologia , Vírus/patogenicidade
12.
BMC Infect Dis ; 24(1): 803, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123113

RESUMO

BACKGROUND: Predicting an individual's risk of death from COVID-19 is essential for planning and optimising resources. However, since the real-world mortality rate is relatively low, particularly in places like Hong Kong, this makes building an accurate prediction model difficult due to the imbalanced nature of the dataset. This study introduces an innovative application of graph convolutional networks (GCNs) to predict COVID-19 patient survival using a highly imbalanced dataset. Unlike traditional models, GCNs leverage structural relationships within the data, enhancing predictive accuracy and robustness. By integrating demographic and laboratory data into a GCN framework, our approach addresses class imbalance and demonstrates significant improvements in prediction accuracy. METHODS: The cohort included all consecutive positive COVID-19 patients fulfilling study criteria admitted to 42 public hospitals in Hong Kong between January 23 and December 31, 2020 (n = 7,606). We proposed the population-based graph convolutional neural network (GCN) model which took blood test results, age and sex as inputs to predict the survival outcomes. Furthermore, we compared our proposed model to the Cox Proportional Hazard (CPH) model, conventional machine learning models, and oversampling machine learning models. Additionally, a subgroup analysis was performed on the test set in order to acquire a deeper understanding of the relationship between each patient node and its neighbours, revealing possible underlying causes of the inaccurate predictions. RESULTS: The GCN model was the top-performing model, with an AUC of 0.944, considerably outperforming all other models (p < 0.05), including the oversampled CPH model (0.708), linear regression (0.877), Linear Discriminant Analysis (0.860), K-nearest neighbours (0.834), Gaussian predictor (0.745) and support vector machine (0.847). With Kaplan-Meier estimates, the GCN model demonstrated good discriminability between low- and high-risk individuals (p < 0.0001). Based on subanalysis using the weighted-in score, although the GCN model was able to discriminate well between different predicted groups, the separation was inadequate between false negative (FN) and true negative (TN) groups. CONCLUSION: The GCN model considerably outperformed all other machine learning methods and baseline CPH models. Thus, when applied to this imbalanced COVID survival dataset, adopting a population graph representation may be an approach to achieving good prediction.


Assuntos
COVID-19 , Redes Neurais de Computação , SARS-CoV-2 , Humanos , COVID-19/mortalidade , COVID-19/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Hong Kong/epidemiologia , Idoso , Adulto , Testes Hematológicos/métodos , Aprendizado de Máquina , Modelos de Riscos Proporcionais , Estudos de Coortes
13.
Int J Hyperthermia ; 41(1): 2382162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39043380

RESUMO

Background: Central nervous system (CNS) injury is the most prominent feature of heatstroke and the hippocampus is prone to damage. However, the mechanisms underlying the heatstroke-induced hippocampal injury remain unclear. Hyperbaric oxygen (HBO) therapy prevents CNS injury in heatstroke mice. However, the underlying mechanisms of HBO in heatstroke-induced hippocampal injury remain unclear. This study aimed to elucidate the protective effects of HBO against hippocampal injury and its potential role in microglial pyroptosis in heatstroke rats.Methods: A rat heatstroke model and a heat stress model with a mouse microglial cell line (BV2) were, respectively, used to illustrate the effect of HBO on heat-induced microglial pyroptosis in vivo and in vitro. We used a combination of molecular and histological methods to assess microglial pyroptosis and neuroinflammation both in vivo and in vitro.Results: The results revealed that HBO improved heatstroke-induced survival outcomes, hippocampal injury, and neurological dysfunction in rats. In addition, HBO mitigates microglial pyroptosis and reduces the expression of pro-inflammatory cytokines in the hippocampus of heatstroke rats. In vitro experiments showed that HBO attenuated BV2 cell injury under heat stress. Furthermore, HBO prevented heat-induced pyroptosis of BV2 cells, and the expression of pro-inflammatory cytokines IL-18 and IL-1ß was reduced. Mechanistically, HBO alleviates heatstroke-induced neuroinflammation and hippocampal injury by preventing microglial pyroptosis. Conclusions: In conclusion, HBO attenuates heatstroke-induced neuroinflammation and hippocampal injury by inhibiting microglial pyroptosis.


Assuntos
Golpe de Calor , Hipocampo , Oxigenoterapia Hiperbárica , Microglia , Piroptose , Animais , Golpe de Calor/terapia , Golpe de Calor/complicações , Oxigenoterapia Hiperbárica/métodos , Hipocampo/metabolismo , Ratos , Microglia/metabolismo , Masculino , Ratos Sprague-Dawley , Camundongos
14.
J Sep Sci ; 47(1): e2300233, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010107

RESUMO

Lingbao Huxin Dan (LBHX) is an effective prescription for treating various cardiovascular diseases. However, its systematic chemical composition analysis and important marker components remain unclear, which hinders the development of standards or guidelines for quality evaluation. Herein, a high-resolution and efficient method was established to comprehensively investigate the chemical ingredients and metabolites of LBHX by using gas chromatography-tandem mass spectrometry and ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. AutoDock Vina was applied to conduct visual screening for identifying potential active compounds targeting two important sick sinus syndrome-associated proteins. As a result, 53 volatile compounds, as well as 191 non-volatile chemical components, including bufadienolides, diterpenoids, bile acids, phenolic acids, and triterpenoid saponins, were unambiguously characterized or tentatively identified. Fifty prototypes and 62 metabolites were identified in the plasma of rats, whilst metabolism reactions included phase I reactions (hydrolysis, oxidation, and hydroxylation) and phase II reactions (glucuronidation and methylation). Eleven compounds with good binding affinity have been observed by docking with key proteins. It is the first systematic study on the pharmacodynamic material basis of LBHX and the result consolidates the foundation for further study regarding the mechanism in treating cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Medicamentos de Ervas Chinesas , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Ratos Sprague-Dawley , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/análise
15.
Lett Appl Microbiol ; 77(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402465

RESUMO

The global pandemic of COVID-19 has been over four years, and the role of intestinal microbiota in the occurrence and development of COVID-19 needs to be further clarified. During the outbreak of SARS-CoV-2 Omicron variant in China, we analyzed the intestinal microbiome in fecal samples from inpatients with pneumonia and normal individuals in January 2023. The microbiota composition, alpha diversity, beta diversity, differential microbial community, co-occurrence networks, and functional abundance were analyzed. The results showed significant differences in microbiota composition between the two groups. In pneumonia group, the abundance of Bifidobacterium, Blautia, Clostridium, and Coprococcus decreased, while the abundance of Enterococcus, Lactobacillus, and Megamonas increased. Through LEfSe analysis, 37 marker microbiota were identified in pneumonia group. Co-occurrence network analysis found that Lachnospiraceae was critical for the interaction of intestinal microbiota, and the anti-inflammatory bacteria Blautia was negatively correlated with the pro-inflammatory bacteria Ruminococcus. Functional prediction found the up-regulation of steroid biosynthesis, geraniol degradation, and mRNA surveillance pathway in pneumonia group. In conclusion, opportunistic pathogens increased and probiotics, or short-chain fatty acid-producing bacteria, decreased in the intestinal microbiota of pneumonia inpatients during the Omicron epidemic. Blautia could be used as a probiotic in the treatment of pneumonia patients in the future.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Pneumonia , Probióticos , Humanos , SARS-CoV-2/genética , Microbioma Gastrointestinal/genética , Pacientes Internados , Ácidos Graxos Voláteis , Pneumonia/epidemiologia , Bactérias/genética
16.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260378

RESUMO

Centrosome duplication and DNA replication are two pivotal events that higher eukaryotic cells use to initiate proliferation. While DNA replication is initiated through origin licensing, centrosome duplication starts with cartwheel assembly and is partly controlled by CP110. However, the upstream coordinator for both events has been, until now, a mystery. Here, we report that suppressor of fused protein (Sufu), a negative regulator of the Hedgehog (Hh) pathway playing a significant role in restricting the trafficking and function of glioma-related (Gli) proteins, acts as an upstream switch by facilitating CP110 phosphorylation by CDK2, promoting intranuclear Cdt1 degradation and excluding prereplication complex (pre-RC) components from chromosomes, independent of its canonical function in the Hh pathway. We found that Sufu localizes to both the centrosome and the nucleus and that knockout of Sufu induces abnormalities including centrosome amplification, increased nuclear size, multipolar spindle formation, and polyploidy. Serum stimulation promotes the elimination of Sufu from the centrosome by vesicle release at the ciliary tip and from the nucleus via protein degradation, which allows centrosome duplication and DNA replication to proceed. Collectively, this work reveals a mechanism through which Sufu negatively regulates the G1-S transition.


Assuntos
Centrossomo/metabolismo , Replicação do DNA , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular , Núcleo Celular/metabolismo , Cílios/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Vesículas Citoplasmáticas/metabolismo , Fibroblastos/metabolismo , Fase G1 , Células HEK293 , Células HeLa , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Mitose , Mutação/genética , Fosforilação , Proteólise , Proteínas Repressoras/genética , Fase S
17.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928203

RESUMO

The morphological architecture of inflorescence influences seed production. The regulatory mechanisms underlying alfalfa (Medicago sativa) inflorescence elongation remain unclear. Therefore, in this study, we conducted a comparative analysis of the transcriptome, proteome, and metabolome of two extreme materials at three developmental stages to explore the mechanisms underlying inflorescence elongation in alfalfa. We observed the developmental processes of long and short inflorescences and found that the elongation capacity of alfalfa with long inflorescence was stronger than that of alfalfa with short inflorescences. Furthermore, integrative analysis of the transcriptome and proteome indicated that the phenylpropanoid biosynthesis pathway was closely correlated with the structural formation of the inflorescence. Additionally, we identified key genes and proteins associated with lignin biosynthesis based on the differential expressed genes and proteins (DEGs and DEPs) involved in phenylpropanoid biosynthesis. Moreover, targeted hormone metabolome analysis revealed that IAA, GA, and CK play an important role in the peduncle elongation of alfalfa inflorescences. Based on omics analysis, we detected key genes and proteins related to plant hormone biosynthesis and signal transduction. From the WGCNA and WPCNA results, we furthermore screened 28 candidate genes and six key proteins that were correlated with lignin biosynthesis, plant hormone biosynthesis, and signaling pathways. In addition, 19 crucial transcription factors were discovered using correlation analysis that might play a role in regulating candidate genes. This study provides insight into the molecular mechanism of inflorescence elongation in alfalfa and establishes a theoretical foundation for improving alfalfa seed production.


Assuntos
Regulação da Expressão Gênica de Plantas , Inflorescência , Lignina , Medicago sativa , Proteínas de Plantas , Transcriptoma , Medicago sativa/genética , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/metabolismo , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Inflorescência/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lignina/biossíntese , Lignina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Proteoma/metabolismo , Perfilação da Expressão Gênica , Proteômica/métodos , Metaboloma , Multiômica
18.
Angew Chem Int Ed Engl ; 63(10): e202318803, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38205884

RESUMO

Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.

19.
Angew Chem Int Ed Engl ; : e202407640, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898602

RESUMO

Photocatalysis holds a pivotal position in modern organic synthesis, capable of inducing novel reactivities under mild and environmentally friendly reaction conditions. However, the merger of photocatalysis and transition-metal-catalyzed asymmetric C-H activation as an efficient and sustainable method for the construction of chiral molecules remains elusive and challenging. Herein, we develop a cobalt-catalyzed enantioselective C-H activation reaction enabled by visible-light photoredox catalysis, providing a synergistic catalytic strategy for the asymmetric dearomatization of indoles with high levels of enantioselectivity (96 % to >99 % ee). Mechanistic studies indicate that the excited photocatalyst was quenched by divalent cobalt species in the presence of Salox ligand, leading to the formation of catalytically active chiral Co(III) complex. Moreover, stoichiometric reactions of cobaltacycle intermediate with indole suggest that the irradiation of visible light also play a critical role in the dearomatization step.

20.
J Biol Chem ; 298(12): 102658, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356903

RESUMO

Cartwheel assembly is considered the first step in the initiation of procentriole biogenesis; however, the reason for persistence of the assembled human cartwheel structure from S phase to late mitosis remains unclear. Here, we demonstrate mainly using cell synchronization, RNA interference, immunofluorescence and time-lapse-microscopy, biochemical analysis, and methods that the cartwheel persistently assembles and maintains centriole engagement and centrosome integrity during S phase to late G2 phase. Blockade of the continuous accumulation of centriolar Sas-6, a major cartwheel protein, after procentriole formation induces premature centriole disengagement and disrupts pericentriolar matrix integrity. Additionally, we determined that during mitosis, CDK1-cyclin B phosphorylates Sas-6 at T495 and S510, disrupting its binding to cartwheel component STIL and pericentriolar component Nedd1 and promoting cartwheel disassembly and centriole disengagement. Perturbation of this phosphorylation maintains the accumulation of centriolar Sas-6 and retains centriole engagement during mitotic exit, which results in the inhibition of centriole reduplication. Collectively, these data demonstrate that persistent cartwheel assembly after procentriole formation maintains centriole engagement and that this configuration is relieved through phosphorylation of Sas-6 by CDK1-cyclin B during mitosis in human cells.


Assuntos
Centríolos , Centrossomo , Humanos , Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Mitose , Fosforilação , Proteínas/metabolismo , Ciclina B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA