Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
3D Print Addit Manuf ; 11(1): 406-414, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38389671

RESUMO

Ceramics have many applications in mechanics, electronics, aerospace, and biomedicine because of their high mechanical strength, high-temperature resistance, and excellent chemical stability. Three-dimensional (3D) printing is a fast, efficient, and intelligent technology that has revolutionized the manufacturing of complex structural parts. Among many ceramic 3D printing technologies, photopolymerization-based 3D printing techniques print out molded ceramic components with high molding accuracy and surface finish and have received widespread attention. This article reviews the current research status and problems experienced by three mainstream ceramic photocuring technologies, namely stereoscopic, digital light processing, and two-photon polymerization.

2.
ChemSusChem ; : e202301847, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727018

RESUMO

Organic electrode materials are promising to be applied in sodium ion batteries (SIBs) due to their low cost and easily modified molecular structures. Nevertheless, low conductivity and high solubility in electrolytes still limit the development of organic electrodes. In this work, a carboxylate small molecule (BDTTS) based on tetrathiafulvalene is developed as anode material for SIBs. BDTTS has a large rigid π-conjugated planar structure, which may reduce solubility in the electrolyte, meanwhile facilitating charge transporting. Experimental results and theoretical calculations both support that apart from the four carbonyl groups, the sulfur atoms on tetrathiafulvalene also provide additional active sites during the discharge/charge process. Therefore, the additional active sites can well compensate for the capacity loss caused by the large molecular weight. The as-synthesized BDTTS electrode renders an excellent capacity of 230 mAh g-1 at a current density of 50 mA g-1 and an excellent long-life performance of 128 mAh g-1 at 2 C after 500 cycles. This work enriches the study on organic electrodes for high-performance SIBs and paves the way for further development and utilization of organic electrodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA