Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 18(1): 295, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906644

RESUMO

BACKGROUND: The outbreak of Lumpy skin disease (LSD) in cattle caused by LSD virus (LSDV) was first reported in August 2019 in China. Since then, several LSD outbreaks have been reported in seven different provinces of China. Until now, several Lumpy skin disease virus (LSDV) strains from China have been reported and sequenced including LSDV/Xinjiang/2019 (MN598005.1), China/GD01/2020 (MW355944.1), and LSDV/Hongkong/2021 (MW732649.1). In October 2020, more than 1,700 cattle imported from Chile arrived in Xilingol, Inner Mongolia, and were diagnosed with LSD. Currently, limited data on the origin of the virus is available. METHODS: Nucleotide sequences of the ORF11, ORF36, ORF74, ORF117, ORF126 genes and the complete genome of LSDV strains and isolates were downloaded from NCBI database. MEGA7.0 was used to perform phylogenetic analysis with Neighbor-Joining (NJ). DNASTAR software is used to analyze homologous comparison analysis with related genes of reference strains included in Genbank. RESULTS: Compared with other strains isolated from China, the results of full genome sequence analysis showed the LSDV/NMG/2020 strain belonged to the recombinant strains. The LSDV/NMG/2020 strain is different from the current LSDV field isolates in Africa, the Middle East, Europe, and the newly emerged LSDV Russia variants. Based on the identities of P32, RPO30, EEV, GPCR and LSDV117 genes (99.8%, 99%, 99.8%, 99% and 98.7%), the sub-cluster recombinant containing LSDV/NMG/2020 strain is phylogenetically closer to the Russia strain (Saratov/2017). CONCLUSIONS: In this study, we reported a new isolated LSDV strain named LSDV/NMG/2020. The results of genomic characterization and phylogenetic analysis demonstrated that the LSDV/NMG/2020 isolate was a vaccine-like recombinant strain.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Doença Nodular Cutânea/epidemiologia , Filogenia
2.
Vaccine ; 38(3): 549-561, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31740094

RESUMO

Mycoplasma bovis is an important pathogenic bacterium affecting cows and cattle. Clinically, an inactivated vaccine of M. bovis is mainly used to prevent infection by this bacterium. The changes that occur in the antigen when M. bovis is continuously passaged in vitro remain unknown. Therefore, we performed an in vitro serial passage of the M. bovis NM-28 strain, which was isolated and identified in our laboratory. An isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics method was used to analyse the differences between generations 3 and 60. Many major membrane proteins or protective antigens reported in the literature did not exhibit changes between these generations. We found an imbalance between growth rate and nutrition in the 60th generation. The proteomics results were verified by western blotting and real-time PCR. Growth curves were also prepared based on colony-forming units (CFUs) between the 3rd and 60th generations. The number of colonies in the 60th generation in the stationary phase was 5 × 109 CFU mL-1, which was 10-fold higher than that in the 3rd generation. The 60th generation of the NM-28 strain can be used as an inactivated vaccine strain of M. bovis to lower production costs compared to use of the 3rd generation.


Assuntos
Vacinas Bacterianas/genética , Mycoplasma bovis/crescimento & desenvolvimento , Mycoplasma bovis/genética , Proteômica/métodos , Vacinas de Produtos Inativados/genética , Animais , Vacinas Bacterianas/isolamento & purificação , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/prevenção & controle , Mycoplasma bovis/isolamento & purificação , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vacinas de Produtos Inativados/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA