Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(43): e2404709121, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39423241

RESUMO

As catabolic enzyme, CD73 dephosphorylates adenosine monophosphate (AMP) and can also regulate tumor cell proliferation and metastasis. To date, very few studies have explored the role of CD73 in mediating non-small cell lung cancer (NSCLC) metastasis, and the underlying transducing signal has not been elucidated. In the present study, we demonstrated that the CD73/Axl axis could regulate Smad3-induced epithelial-to-mesenchymal transition (EMT) to promote NSCLC metastasis. Mechanically, CD73 can be secreted via the Golgi apparatus transport pathway. Then secreted CD73 may activate AXl by directly bind with site R55 located in Axl extracellular domain independently of GAS6. In addition, we proved that CD73 can stabilize Axl expression via inhibiting CBLB expression. We also identified the distinct function of CD73 activity in adenocarcinoma and squamous cell carcinoma. Our findings indicated a role of CD73 in mediating NSCLC metastasis and propose it as a therapeutic target for NSCLC.


Assuntos
5'-Nucleotidase , Receptor Tirosina Quinase Axl , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Proteínas Ligadas por GPI , Peptídeos e Proteínas de Sinalização Intercelular , Neoplasias Pulmonares , Metástase Neoplásica , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , 5'-Nucleotidase/metabolismo , 5'-Nucleotidase/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteína Smad3/metabolismo , Proteína Smad3/genética , Regulação Neoplásica da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-39236286

RESUMO

The role of circRNAs in sepsis-induced lung injury is not clear. This study investigated the role and molecular mechanism of a novel circRNA in sepsis-induced lung injury and explored its prognostic value in sepsis patients. In this study, aberrant circRNA expression profiling in lung tissues from mice with sepsis-induced lung injury was analyzed using high-throughput sequencing. CircRNA-Cacna1d was verified by quantitative real-time polymerase chain reaction, and its biological function in sepsis-induced lung injury was validated in vitro and in vivo. The interactions among circRNA-Cacna1d, miRNAs, and their downstream genes were verified. Furthermore, the clinical value of circRNA-Cacna1d in peripheral blood from sepsis patients was also evaluated. We found that circRNA-Cacna1d expression was significantly increased in lung tissues of sepsis mice and microvascular endothelial cells after lipopolysaccharide (LPS) challenge. CircRNA-Cacna1d knockdown alleviated inflammatory response and ameliorated the permeability of vascular endothelium, thereby mitigating sepsis-induced lung injury and significantly improving the survival rate of sepsis mice. Mechanistically, circRNA-Cacna1d directly interacted with miRNA-185-5p and functioned as a miRNA sponge to regulate the RhoA/ROCK1 signaling pathway. The expression level of circRNA-Cacna1d in patients with early sepsis was significantly higher than that in the healthy controls. Higher levels of circRNA-Cacna1d in sepsis patients were associated with increased disease severity and poorer outcomes. In conclusions, circRNA-Cacna1d may play a role in sepsis-induced lung injury by regulating the RhoA/ROCK1 axis by acting as miRNA-185-5p sponge. CircRNA-Cacna1d is a potential therapeutic target for sepsis-induced lung injury and a prognostic biomarker in sepsis.

3.
Anal Chem ; 96(24): 9834-9841, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832651

RESUMO

Complexed and tiresome pretreatment processes have significantly impeded in-field analysis of environmental specimens. Herein, an all-in-one sample separation and enrichment strategy based on a compact charge-selective capture/nanoconfined enrichment (CSC/NCE) device is exploited for marker-free surface-enhanced Raman spectroscopy (SERS) detection of charged pesticides in matrix specimens. This tactic incorporating in situ separations, seizing, and nanoconfined enhancement can greatly elevate the effectiveness of sample pretreatment. Importantly, CSC/NCE with excellent adsorption performances and excellent plasmonic features facilitates concentration and signal amplification of electrically charged pesticides. With the introduction of an electric field on this integrated CSC/NCE, the matrix effect in samples could be significantly eradicated, and a distinct SERS response is witnessed for targeted analytes. Accurate quantification of multipesticides is achieved by synergizing the CSC/NCE chip and chemometrics, and the contents found by the CSC/NCE-based sensing strategy agree with those obtained from chromatography assays with relative deviations lower than 10%. The facile and versatile all-in-one tactic infused in a compact chip exhibits enormous potential for field-test application in chemical measurement and food safety.


Assuntos
Praguicidas , Análise Espectral Raman , Praguicidas/análise , Miniaturização , Nanopartículas Metálicas/química , Propriedades de Superfície
4.
Anal Chem ; 96(21): 8566-8575, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38748451

RESUMO

Unraveling bacterial identity through Raman scattering techniques has been persistently challenging due to homogeneously amplified Raman signals across a wide variety of bacterial molecules, predominantly protein- or nucleic acid-mediated. In this study, we present an approach involving the use of silver nanoparticles to completely and uniformly "mask" adsorption on the surface of bacterial molecules through sodium borohydride and sodium chloride. This approach enables the acquisition of enhanced surface-enhanced Raman scattering (SERS) signals from all components on the bacterial surface, facilitating rapid, specific, and label-free bacterial identification. For the first time, we have characterized the identity of a bacterium, including its DNA, metabolites, and cell walls, enabling the accurate differentiation of various bacterial strains, even within the same species. In addition, we embarked on an exploration of the origin and variability patterns of the main characteristic peaks of Gram-positive and Gram-negative bacteria. Significantly, the SERS peak ratio was found to determine the inflection point of accelerated bacterial death upon treatment with antimicrobials. We further applied this platform to identify 15 unique clinical antibiotic-resistant bacterial strains, including five Escherichia coli strains in human urine, a first for Raman technology. This work has profound implications for prompt and accurate identification of bacteria, particularly antibiotic-resistant strains, thereby significantly enhancing clinical diagnostics and antimicrobial treatment strategies.


Assuntos
Nanopartículas Metálicas , Prata , Análise Espectral Raman , Análise Espectral Raman/métodos , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/análise , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/química , Humanos
5.
Cell Mol Biol Lett ; 29(1): 106, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095708

RESUMO

BACKGROUND: The RNA N6-methyladenosine (m6A) modification has become an essential hotspot in epigenetic modulation. Serine-arginine protein kinase 1 (SRPK1) is associated with the pathogenesis of various cancers. However, the m6A modification of SRPK1 and its association with the mechanism of in lung adenocarcinoma (LUAD) remains unclear. METHODS: Western blotting and polymerase chain reaction (PCR) analyses were carried out to identify gene and protein expression. m6A epitranscriptomic microarray was utilized to the assess m6A profile. Loss and gain-of-function assays were carried out elucidate the impact of METTL3 and SRPK1 on LUAD glycolysis and tumorigenesis. RNA immunoprecipitation (RIP), m6A RNA immunoprecipitation (MeRIP), and RNA stability tests were employed to elucidate the SRPK1's METTL3-mediated m6A modification mechanism in LUAD. Metabolic quantification and co-immunoprecipitation assays were applied to investigate the molecular mechanism by which SRPK1 mediates LUAD metabolism. RESULTS: The epitranscriptomic microarray assay revealed that SRPK1 could be hypermethylated and upregulated in LUAD. The main transmethylase METTL3 was upregulated and induced the aberrant high m6A levels of SRPK1. Mechanistically, SRPK1's m6A sites were directly methylated by METTL3, which also stabilized SRPK1 in an IGF2BP2-dependent manner. Methylated SRPK1 subsequently promoted LUAD progression through enhancing glycolysis. Further metabolic quantification, co-immunoprecipitation and western blot assays revealed that SRPK1 interacts with hnRNPA1, an important modulator of PKM splicing, and thus facilitates glycolysis by upregulating PKM2 in LUAD. Nevertheless, METTL3 inhibitor STM2457 can reverse the above effects in vitro and in vivo by suppressing SRPK1 and glycolysis in LUAD. CONCLUSION: It was revealed that in LUAD, aberrantly expressed METTL3 upregulated SRPK1 levels via an m6A-IGF2BP2-dependent mechanism. METTL3-induced SRPK1 fostered LUAD cell proliferation by enhancing glycolysis, and the small-molecule inhibitor STM2457 of METTL3 could be an alternative novel therapeutic strategy for individuals with LUAD.


Assuntos
Adenocarcinoma de Pulmão , Adenosina , Glicólise , Neoplasias Pulmonares , Metiltransferases , Proteínas Serina-Treonina Quinases , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Glicólise/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Metiltransferases/metabolismo , Metiltransferases/genética , Animais , Regulação Neoplásica da Expressão Gênica , Camundongos , Linhagem Celular Tumoral , Camundongos Nus , Splicing de RNA/genética , Proteínas de Ligação a Hormônio da Tireoide , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proliferação de Células/genética
6.
BMC Pulm Med ; 24(1): 144, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509541

RESUMO

BACKGROUND: The causality of the relationship between bronchiectasis and chronic obstructive pulmonary disease (COPD) remains unclear. This study aims to investigate the potential causal relationship between them, with a specific focus on the role of airway inflammation, infections, smoking as the mediators in the development of COPD. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to assess: (1) the causal impact of bronchiectasis on COPD, sex, smoking status, infections, eosinophil and neutrophil counts, as well as the causal impact of COPD on bronchiectasis; (2) the causal effect of smoking status, infections and neutrophil counts on COPD; and (3) the extent to which the smoking status, infections and neutrophil counts might mediate any influence of bronchiectasis on the development of COPD. RESULTS: COPD was associated with a higher risk of bronchiectasis (OR 1.28 [95% CI 1.05, 1.56]). Bronchiectasis was associated with a higher risk of COPD (OR 1.08 [95% CI 1.04, 1.13]), higher levels of neutrophil (OR 1.01 [95% CI 1.00, 1.01]), higher risk of respiratory infections (OR 1.04 [95% CI 1.02, 1.06]) and lower risk of smoking. The causal associations of higher neutrophil cells, respiratory infections and smoking with higher COPD risk remained after performing sensitivity analyses that considered different models of horizontal pleiotropy, with OR 1.17, 1.69 and 95.13, respectively. The bronchiectasis-COPD effect was 0.99, 0.85 and 122.79 with genetic adjustment for neutrophils, respiratory infections and smoking. CONCLUSION: COPD and bronchiectasis are mutually causal. And increased neutrophil cell count and respiratory infections appears to mediate much of the effect of bronchiectasis on COPD.


Assuntos
Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Infecções Respiratórias , Humanos , Neutrófilos , Fumar/efeitos adversos , Fumar/epidemiologia , Análise da Randomização Mendeliana , Bronquiectasia/complicações , Infecções Respiratórias/complicações , Estudo de Associação Genômica Ampla
7.
Nano Lett ; 23(11): 4830-4836, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37260351

RESUMO

Plasmonic nanopores combined with Raman spectroscopy are emerging as platforms for single-molecule detection and sequencing in label-free mode. Recently, the ability of identifying single DNA bases or amino acids has been demonstrated for molecules adsorbed on plasmonic particles and then delivered into the plasmonic pores. Here, we report on bowl-shaped plasmonic gold nanopores capable of direct Raman detection of single λ-DNA molecules in a flow-through scheme. The bowl shape enables the incident laser to be focused into the nanopore to generate a single intense hot spot with no cut off in pore size. Therefore, we achieved ultrasmall focusing of NIR light in a spot of 3 nm. This enabled us to detect 7 consecutive bases along the DNA chain in flow-through conditions. Furthermore, we found a novel electrofluidic mechanism to manipulate the molecular trajectory within the pore volume so that the molecule is pushed toward the hot spot, thus improving the detection efficiency.


Assuntos
Nanoporos , DNA/química , Ouro/química , Nanotecnologia/métodos , Aminoácidos , Análise Espectral Raman
8.
Cell Commun Signal ; 21(1): 311, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919739

RESUMO

BACKGROUND: Emerging evidence suggests the critical roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and tumor progression. However, the role of m6A in non-small cell lung cancer (NSCLC) is still unclear. This study aimed to explore the role of the m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of NSCLC. METHODS: A human m6A epitranscriptomic microarray analysis was used to identify downstream targets of FTO. Quantitative real-time PCR (qRT‒PCR) and western blotting were employed to evaluate the expression levels of FTO and FAP in NSCLC cell lines and tissues. Gain-of-function and loss-of-function assays were conducted in vivo and in vitro to assess the effects of FTO and FAP on NSCLC metastasis. M6A-RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), luciferase reporter assays, and RNA stability assays were used to explore the mechanism of FTO action. Co-immunoprecipitation (co-IP) assays were used to determine the mechanism of FAP in NSCLC metastasis. RESULTS: FTO was upregulated and predicted poor prognosis in patients with NSCLC. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. CONCLUSION: Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC. Video Abstract.


Emerging evidence suggests the crucial roles of N6-methyladenosine (m6A) RNA modification in tumorigenesis and progression. Nonetheless, the role of m6A in NSCLC remains unclear. The purpose of this study was to investigate the role of m6A demethylase fat mass and obesity-associated protein (FTO) in the tumor metastasis of non-small cell lung cancer (NSCLC). Results illustrated that FTO was upregulated and predicted poor prognosis in NSCLC patients. FTO promoted cell migration and invasion in NSCLC, and the FAK inhibitor defactinib (VS6063) suppressed NSCLC metastasis induced by overexpression of FTO. Mechanistically, FTO facilitated NSCLC metastasis by modifying the m6A level of FAP in a YTHDF2-dependent manner. Moreover, FTO-mediated metastasis formation depended on the interactions between FAP and integrin family members, which further activated the FAK signaling. Our current findings provided valuable insights into the role of FTO-mediated m6A demethylation modification in NSCLC metastasis. FTO was identified as a contributor to NSCLC metastasis through the activation of the FAP/integrin/FAK signaling, which may be a potential therapeutic target for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , RNA , Transdução de Sinais , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
9.
Thromb J ; 21(1): 33, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973680

RESUMO

BACKGROUND: Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare malignancy-related respiratory complication, demonstrating rapid progression of pulmonary hypertension (PH) and respiratory failure. Although a number of treatments have been attempted for patients diagnosed with or suspected of having PTTM, successful-treated cases of PTTM were mainly from imatinib therapy, which was a PDGF receptor inhibitor. Anlotinib was a novel tyrosine kinase inhibitor that targets VEGFR, FGFR, PDGFR, and c-kit. CASE PRESENTATION: We reported a patient of PTTM associated with gastric carcinoma, whom were treated with anlotinib, thereby exhibiting significant improvement of PH and respiratory dysfunction. CONCLUSION: Our case provides a new understanding of therapy to PTTM, with implications for defining anlotinib as candidate drug for PTTM. Clinical diagnosis and prompt initiation of anlotinib might be one of the strategies in patients with unstable PTTM.

10.
Neoplasma ; 70(2): 240-250, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37005955

RESUMO

Transcriptional adaptor 3 (TADA3/ADA3) is a conserved transcriptional co-activator and is dysregulated in many aggressive tumors. However, the role of TADA3 in non-small cell lung cancer (NSCLC) remains unknown. It was previously demonstrated that TADA3 expression correlates with poor prognosis in patients with NSCLC. In the present study, the expression and function of TADA3 were investigated in cells in vitro and in vivo. TADA3 expression was evaluated in clinical specimens and cell lines using reverse transcription-quantitative PCR and western blot analysis. The TADA3 protein level was significantly higher in human NSCLC specimens compared with matched normal tissues. In human NSCLC cell lines, short hairpin RNA-mediated silencing of TADA3 suppressed their proliferative, migratory and invasive abilities in vitro, and delayed G1 to S phase progression through the cell cycle. Consistent with this, TADA3 silencing increased expression of the epithelial marker E-cadherin and reduced expression of the mesenchymal markers, N-cadherin, Vimentin, Snail, and Slug. To verify the effect of TADA3 on tumor formation and growth in vivo, a mouse tumor xenograft model was established. TADA3 silencing slowed the growth of NSCLC tumor xenografts in nude mice, and excised tumors showed a similarly altered pattern of epithelial-mesenchymal transition (EMT) marker expression. The present results demonstrated the significance of TADA3 in regulating the growth and metastasis of NSCLC and may provide a theoretical basis for early diagnosis and targeted therapy of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Transição Epitelial-Mesenquimal/genética , Camundongos Nus , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica
11.
Compr Rev Food Sci Food Saf ; 22(3): 2267-2291, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043598

RESUMO

Polyphenol oxidase (PPO) is a metalloenzyme with a type III copper core that is abundant in nature. As one of the most essential enzymes in the tea plant (Camellia sinensis), the further regulation of PPO is critical for enhancing defensive responses, cultivating high-quality germplasm resources of tea plants, and producing tea products that are both functional and sensory qualities. Due to their physiological and pharmacological values, the constituents from the oxidative polymerization of PPO in tea manufacturing may serve as functional foods to prevent and treat chronic non-communicable diseases. However, current knowledge of the utilization of PPO in the tea industry is only available from scattered sources, and a more comprehensive study is required to reveal the relationship between PPO and tea obviously. A more comprehensive review of the role of PPO in tea was reported for the first time, as its classification, catalytic mechanism, and utilization in modulating tea flavors, compositions, and nutrition, along with the relationships between PPO-mediated enzymatic reactions and the formation of functional constituents in tea, and the techniques for the modification and application of PPO based on modern enzymology and synthetic biology are summarized and suggested in this article.


Assuntos
Camellia sinensis , Catecol Oxidase/metabolismo , Oxirredução , Chá
12.
Br J Cancer ; 127(12): 2154-2165, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253524

RESUMO

BACKGROUND: Bronchial washing fluid (BWF) is a less-invasive specimen. Due to the limited sensitivity of BWF cellular component diagnosis, the aim of this study was to explore the potential role of BWF supernatant as a source of liquid biopsy of lung cancer. METHODS: This prospective study enrolled 76 suspected and 5 progressed lung cancer patients. Transbronchial biopsy tissues, BWF supernatant (BWF_Sup) and BWF precipitant (BWF_Pre) were tested by a targeted panel of 1021 genes. RESULTS: BWF_Sup cell-free DNA (cfDNA) was superior to tissue biopsy and BWF_Pre in determining mutational allele frequency, tumour mutational burden, and chromosomal instability. Moreover, BWF_Sup and BWF_Pre achieved comparable efficacy to tissue samples in differentiating malignant and benign patients, but only BWF_Sup persisted differentiated performance after excluding 55 malignancies pathologically diagnosed by bronchoscopic biopsy. Among 67 malignant patients, 82.1% and 71.6% of tumour-derived mutations (TDMs) were detected in BWF_Sup and BWF_Pre, respectively, and the detectability of TDMs in BWF_Sup was independent of the cytological examination of BWF. BWF_Sup outperformed BWF_Pre in providing more subclonal information and thus might yield advantage in tracking drug-resistant markers. CONCLUSIONS: BWF_Sup cfDNA is a reliable medium for lung cancer diagnosis and genomic profiles and may provide important information for subsequent therapeutic regimens.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Humanos , Ácidos Nucleicos Livres/genética , Estudos Prospectivos , Genômica , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
13.
Cell Commun Signal ; 20(1): 16, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35101055

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the most lethal tumour worldwide. Copine 1 (CPNE1) was identified as a novel oncogene in NSCLC in our previous study. However, its specific function and relative mechanisms remain poorly understood. METHODS: The biological role of CPNE1 and RACK1 in NSCLC was investigated using gene expression knockdown and overexpression, cell proliferation assays, clonogenic assays, and Transwell assays. The expression levels of CPNE1, RACK1 and other proteins were determined by western blot analysis. The relationship between CPNE1 and RACK1 was predicted and investigated by mass spectrometry analysis, immunofluorescence staining, and coimmunoprecipitation. NSCLC cells were treated with a combination of a MET inhibitor and gefitinib in vitro and in vivo. RESULTS: We found that CPNE1 facilitates tumorigenesis in NSCLC by interacting with RACK1, which further induces activation of MET signaling. CPNE1 overexpression promoted cell proliferation, migration, invasion and MET signaling in NSCLC cells, whereas CPNE1 knockdown produced the opposite effects. In addition, the suppression of the enhancing effect of CPNE1 overexpression on tumorigenesis and MET signaling by knockdown of RACK1 was verified. Moreover, compared to single-agent treatment, dual blockade of MET and EGFR resulted in enhanced reductions in the tumour volume and downstream signaling in vivo. CONCLUSIONS: Our findings show that CPNE1 promotes tumorigenesis by interacting with RACK1 and activating MET signaling. The combination of a MET inhibitor with an EGFR-TKI attenuated tumour growth more significantly than either single-drug treatment. These findings may provide new insights into the biological function of CPNE1 and the development of novel therapeutic strategies for NSCLC. Video Abstract.


Assuntos
Proteínas de Ligação ao Cálcio , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Transdução de Sinais
14.
BMC Infect Dis ; 22(1): 831, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352356

RESUMO

BACKGROUND: At present, the role of inactivated vaccines in viral RNA shedding among Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) breakthrough infections is still unknown. METHODS: We collected data of 147 coronavirus disease 2019 (COVID-19) patients with mild-to-moderate illness who were hospitalized in the Third People's Hospital of Yangzhou from 7 to 20 August 2021 and analyzed the differences in symptoms and laboratory tests among fully vaccinated (FV), partially vaccinated (PV) and unvaccinated (UV) patients. RESULTS: The median duration of viral RNA shedding was shorter in the FV (12 [IQR, 9.5-14] days) and PV (13 [IQR, 9-16.75] days) groups than in the UV group (15 [IQR, 11.75-17.25] days) (adjusted P < 0.001 and adjusted P = 0.23, respectively). The median titers of SARS-CoV-2-specific IgG and IgM were significantly higher in the FV (12.29 S/co [IQR, 2.08-63.59] and 0.3 S/co [IQR, 0.05-2.29], respectively) and PV (0.68 S/co [IQR, 0.14-28.69] and 0.12 S/co [0.03-5.23], respectively) groups than in the UV group (0.06 S/co [IQR, 0.03-0.47] and 0.04 S/co [IQR, 0.02-0.07]) (adjusted P < 0.001 and adjusted P = 0.008, respectively). CONCLUSIONS: Inactivated vaccines may shorten viral RNA shedding in breakthrough infected patients who have mild-to-moderate illness and may improve the ability of the host to generate specific antibodies to infection.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , RNA Viral , Estudos Retrospectivos , Vacinas de Produtos Inativados , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina M
15.
Phys Chem Chem Phys ; 24(5): 2826-2831, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35043815

RESUMO

Surface-enhanced Raman spectroscopy (SERS) finds wide applications in the field of organic molecule detection. However, reliable SERS detection of organic molecules and in situ monitoring of organic reactions under natural conditions by metal colloids are still challenging due to the formation of unstable nanoparticle clusters in solution and the low solubility of the organic molecules. Here, we approach the problems by introducing calcium ions to aggregate silver nanoparticles to form stable hot spots and acetone to promote uniform distribution of organic molecules on the nanoparticle surface. Significantly, our method exhibits stable SERS detection of up to 6 types of organic molecules in liquid. With acetone signals as an internal standard, we are able to determine molecule concentrations as well as monitor 3 kinds of organic reactions in situ. Our method shows potential for biomedical analysis, environmental analysis, and organic catalysis research.


Assuntos
Nanopartículas Metálicas , Prata , Coloides , Análise Espectral Raman
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 438-448, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514216

RESUMO

Hypoxia plays a crucial role in pulmonary vascular remodelling at the early stage of chronic obstructive pulmonary disease (COPD). Circle RNA (circRNA) has been identified to play a critical role in multiple diseases. However, the role of circRNAs in pulmonary vascular remodelling in COPD remains unclear. In this study, we aim to investigate the role of circRNAs in pulmonary arterial smooth muscle cell proliferation and pulmonary vascular remodelling in COPD. COPD patients show lower partial pressure of arterial oxygen and pulmonary arterial remodeling as compared with controls. circRNA microarray and real-time PCR analyses show significantly higher level of circ-BPTF and lower miR-486-5p level in the pulmonary arteries of COPD patients as compared with controls. Hypoxia suppresses miR-486-5p expression but promotes expressions of circ-BPTF and cell migration inducing protein (CEMIP) in human pulmonary arterial smooth muscle cells (PASMCs) in vitro. Loss- and gain-of-function experiments show that circ-BPTF promotes PASMC proliferation in vitro. Moreover, luciferase reporter assay results indicate that circ-BPTF regulates PASMC proliferation by acting as an miR-486-5p sponge. CEMIP is identified as a candidate target gene of miR-486-5p by luciferase reporter assay. Overall, our study shows that circ-BPTF serves as a miR-486-5p sponge to regulate CEMIP and promote hypoxic PASMC proliferation in pulmonary vascular remodelling in COPD.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Movimento Celular/genética , Proliferação de Células/genética , Hipóxia/metabolismo , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas/metabolismo , Artéria Pulmonar/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Remodelação Vascular/genética
17.
Hum Mutat ; 42(10): 1254-1264, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245634

RESUMO

HLA-I LOH may facilitate immune evasion. However, large population studies on the prevalence of HLA-I LOH across different cancer types and in relation to mutational profiles are lacking, in particular, in the Chinese population. In this study, analysis was performed in 1504 advanced pan-cancer patients and 134 early-stage non-small-cell lung cancer patients using a 1021-gene panel. The consistency between the 1021-gene panel and whole-exome sequencing was evaluated in 45 samples, where concordant results were obtained in 95.6% (43/45) of the samples. Analytical results revealed that the prevalence of HLA-I LOH in tumor tissue presents considerable differences across cancer types. HLA-I LOH was relevant to genomic instability, reflected in higher tumor mutation burden level. HLA-I LOH occurs more frequently in MSS samples than in MSI-H samples. The alteration frequencies of p53 pathway, RTK/RAS pathway, Notch pathway, Hippo pathway, and Nrf2 pathway in HLA-I LOH group were significantly higher than that in HLA-I stable group (p < .0001, p < .0001, p = .032, p = .013, p = .003, respectively). In DNA damage response pathways, alterations in the checkpoint factor pathway and Fanconi anemia pathway are enriched in HLA-I LOH group (p < .0001, p = .023, respectively). Besides, HLA-I LOH was accompanied by higher mutation rates of several tumor suppressors, including TP53 and LRP1B. These results may shed light on follow-up tumor immunology research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , China/epidemiologia , Genômica , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética , Prevalência
18.
J Cell Mol Med ; 25(1): 284-296, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33237585

RESUMO

Results from various studies reveal that the role of G protein-coupled oestrogen receptor (GPER) is cancer-context dependent, and the function of GPER in non-small-cell lung cancer (NSCLC) is still unclear. The present study demonstrated that neoplasm lung tissues expressed higher level of GPER compared with the normal lung tissues. The clinical data also showed that GPER expression level was positively correlated with the tumour stage of NSCLC. Our experimental data confirmed that GPER played an oncogenic role to promote cell growth of NSCLC cells. Mechanistic dissection revealed that GPER could modulate the NOTCH1 pathway to regulate cell growth in NSCLC cells. Further exploration of the mechanism demonstrated that GPER could up-regulate circNOTCH1, which could compete with NOTCH1 mRNA for METTL14 binding. Because of the lack of m6A modification by METTL14 on the NOTCH1 mRNA, NOTCH1 mRNA was more stable and much easier to undergo protein translation. Subsequently, we found that GPER could prevent YAP1 phosphorylation and promote YAP1-TEAD's transcriptional regulation on QKI, a transacting RNA-binding factor involved in circRNA biogenesis, to facilitate circNOTCH1 generation. Supportively, data from preclinical mice model with implantation of H1299 cells also demonstrated that knock-down of circNOTCH1 could block GPER-induced NOTCH1 to suppress NSCLC tumour growth. Together, our data showed that GPER could promote NSCLC cell growth via regulating the YAP1/QKI/circNOTCH1/m6A methylated NOTCH1 pathway, and targeting our identified molecules may be a potentially therapeutic approach to suppress NSCLC development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptor Notch1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Neoplasias Pulmonares/genética , Metiltransferases/genética , Proteínas de Ligação a RNA/genética , Receptor Notch1/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
19.
BMC Immunol ; 22(1): 39, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172011

RESUMO

BACKGROUND: Health care workers (HCWs) are at risk for occupationally acquired Mycobacterium tuberculosis infection and tuberculosis (TB) disease due to repeated exposure to workplace tubercle bacilli. To determine whether continual mycobacterial stimulation correlates with increased expression of inhibitory T cell receptors, here we compared PD-1 receptor expression on surfaces of circulating T cells between naïve (uninfected) HCWs and HCWs with latent TB infection (LTBI). RESULT: Data collected from 133 medical workers who met study selection criteria were included in the final analysis. QuantiFERON-TB Gold In-​Tube (QFT-GIT) testing yielded positive results for 32 HCWs, for an overall LTBI rate of 24.1%. Multivariate analysis identified HCW length of service > 15 years as an independent risk factor for a positive QFT-GIT result. In addition, comparisons of blood T cell subgroup profiles between QFT- and QFT+ groups indicated QFT+ subjects possessed greater proportions of mature (TM), transitional memory (TTM) and effector memory (TEM) CD4+ T cell subgroups and lower proportions of naïve T cells (TN). Moreover, the QFT+ group percentage of CD8+ T cells with detectable surface PD-1 was significantly higher than the corresponding percentage for the QFT- group. Meanwhile, no statistical intergroup difference was observed in percentages of CD4+ T cells with detectible surface PD-1. CONCLUSIONS: Our data demonstrated that upregulated PD-1 expression on circulating CD8+, but not CD4+ T cells, was associated with latent TB infection of HCWs. As compared to other hospitals, occupational TB infection risk in our hospital was substantially mitigated by implementation of multitiered infection control measures.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Pessoal de Saúde , Tuberculose Latente/imunologia , Mycobacterium tuberculosis/fisiologia , Receptor de Morte Celular Programada 1/metabolismo , Tuberculose/imunologia , Adulto , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Exposição Ocupacional/efeitos adversos , Risco , Regulação para Cima
20.
Invest New Drugs ; 39(2): 477-487, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33052556

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are recommended first-line treatments in EGFR-mutated (EGFRm) non-small-cell lung cancer (NSCLC). However, acquired resistance (e.g. MET amplification) is frequently observed. Savolitinib (volitinib, HMPL-504, AZD6094) is an oral, potent, and highly selective MET-TKI. In this phase Ib, open-label, multicenter study, we enrolled Chinese patients with EGFRm advanced NSCLC, whose disease progressed following prior EGFR-TKI treatment. In the safety run-in, patients received savolitinib 600 or 800 mg plus gefitinib 250 mg orally once daily, and dose-limiting toxicities were recorded. In the expansion phase, patients with MET amplification received savolitinib plus gefitinib. The primary endpoint was safety/tolerability. Secondary endpoints included antitumor activity. Thirteen patients were enrolled in the safety phase (median age 52 years, 46% female) and 51 enrolled in the expansion phase (median age 61 years, 67% female). No dose-limiting toxicities were reported in either dose group during the safety run-in. Adverse events of grade ≥ 3 in the safety run-in and expansion phases (n = 57) were reported in 21 (37%) patients. The most frequently reported adverse events (all grades) were: vomiting (n = 26, 46%), nausea (n = 23, 40%), increased aspartate aminotransferase (n = 22, 39%). Of four deaths, none were treatment-related. The objective response rates in EGFR T790M-negative, -positive, and -unknown patients were 52% (12/23), 9% (2/23), and 40% (2/5), respectively. Savolitinib 600 mg plus gefitinib 250 mg once daily had an acceptable safety profile and demonstrated promising antitumor activity in EGFRm, MET-amplified advanced NSCLC patients who had disease progression on EGFR-TKIs. NCT02374645, Date of registration: March 2nd 2015.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazinas/uso terapêutico , Triazinas/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Feminino , Gefitinibe/administração & dosagem , Gefitinibe/efeitos adversos , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-met/biossíntese , Pirazinas/administração & dosagem , Pirazinas/efeitos adversos , Triazinas/administração & dosagem , Triazinas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA