Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(4): 539-555.e7, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36702126

RESUMO

Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.


Assuntos
Replicação do DNA , Proteína de Replicação A , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Replicação do DNA/genética , Sumoilação , Dano ao DNA , Cromatina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Mol Cell ; 83(7): 1043-1060.e10, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854302

RESUMO

Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.


Assuntos
Cromatina , Reparo do DNA , Animais , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Mamíferos/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/metabolismo
3.
Mol Cell ; 79(5): 824-835.e5, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32649882

RESUMO

DNA-protein crosslinks (DPCs) are highly toxic DNA lesions that threaten genomic integrity. Recent findings highlight that SPRTN, a specialized DNA-dependent metalloprotease, is a central player in proteolytic cleavage of DPCs. Previous studies suggest that SPRTN deubiquitination is important for its chromatin association and activation. However, the regulation and consequences of SPRTN deubiquitination remain unclear. Here we report that, in response to DPC induction, the deubiquitinase VCPIP1/VCIP135 is phosphorylated and activated by ATM/ATR. VCPIP1, in turn, deubiquitinates SPRTN and promotes its chromatin relocalization. Deubiquitination of SPRTN is required for its subsequent acetylation, which promotes SPRTN relocation to the site of chromatin damage. Furthermore, Vcpip1 knockout mice are prone to genomic instability and premature aging. We propose a model where two sequential post-translational modifications (PTMs) regulate SPRTN chromatin accessibility to repair DPCs and maintain genomic stability and a healthy lifespan.


Assuntos
Envelhecimento/genética , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Acetilação , Envelhecimento/metabolismo , Animais , Linhagem Celular , Dano ao DNA , Proteínas de Ligação a DNA/genética , Enzimas Desubiquitinantes/metabolismo , Endopeptidases/metabolismo , Feminino , Instabilidade Genômica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ubiquitinação
4.
Mol Cell ; 68(1): 171-184.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985503

RESUMO

A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Peptídeos/genética , RNA Longo não Codificante/genética , Processamento Alternativo , Motivos de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Éxons , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
5.
Drug Resist Updat ; 74: 101085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636338

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


Assuntos
Quebras de DNA de Cadeia Dupla , Resistencia a Medicamentos Antineoplásicos , Recombinação Homóloga , Quinase Syk , Quinase Syk/metabolismo , Quinase Syk/genética , Quinase Syk/antagonistas & inibidores , Humanos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Feminino , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Reparo do DNA/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos
6.
J Biol Chem ; 298(2): 101563, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998823

RESUMO

The cytidine deaminase APOBEC3B (A3B) is an endogenous inducer of somatic mutations and causes chromosomal instability by converting cytosine to uracil in single-stranded DNA. Therefore, identification of factors and mechanisms that mediate A3B expression will be helpful for developing therapeutic approaches to decrease DNA mutagenesis. Arsenic (As) is one well-known mutagen and carcinogen, but the mechanisms by which it induces mutations have not been fully elucidated. Herein, we show that A3B is upregulated and required for As-induced DNA damage and mutagenesis. We found that As treatment causes a decrease of N6-methyladenosine (m6A) modification near the stop codon of A3B, consequently increasing the stability of A3B mRNA. We further reveal that the demethylase FTO is responsible for As-reduced m6A modification of A3B, leading to increased A3B expression and DNA mutation rates in a manner dependent on the m6A reader YTHDF2. Our in vivo data also confirm that A3B is a downstream target of FTO in As-exposed lung tissues. In addition, FTO protein is highly expressed and positively correlates with the protein levels of A3B in tumor samples from human non-small cell lung cancer patients. These findings indicate a previously unrecognized role of A3B in As-triggered somatic mutation and might open new avenues to reduce DNA mutagenesis by targeting the FTO/m6A axis.


Assuntos
Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Arsênio , Carcinoma Pulmonar de Células não Pequenas , Citidina Desaminase , Neoplasias Pulmonares , Antígenos de Histocompatibilidade Menor , RNA Mensageiro , Adenosina/genética , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Arsênio/toxicidade , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Carcinoma Pulmonar de Células não Pequenas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Desmetilação/efeitos dos fármacos , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Mutagênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Nucleic Acids Res ; 49(19): 11224-11240, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34606619

RESUMO

The human RecQ helicase BLM is involved in the DNA damage response, DNA metabolism, and genetic stability. Loss of function mutations in BLM cause the genetic instability/cancer predisposition syndrome Bloom syndrome. However, the molecular mechanism underlying the regulation of BLM in cancers remains largely elusive. Here, we demonstrate that the deubiquitinating enzyme USP37 interacts with BLM and that USP37 deubiquitinates and stabilizes BLM, thereby sustaining the DNA damage response (DDR). Mechanistically, DNA double-strand breaks (DSB) promotes ATM phosphorylation of USP37 and enhances the binding between USP37 and BLM. Moreover, knockdown of USP37 increases BLM polyubiquitination, accelerates its proteolysis, and impairs its function in DNA damage response. This leads to enhanced DNA damage and sensitizes breast cancer cells to DNA-damaging agents in both cell culture and in vivo mouse models. Collectively, our results establish a novel molecular mechanism for the USP37-BLM axis in regulating DSB repair with an important role in chemotherapy and radiotherapy response in human cancers.


Assuntos
Neoplasias da Mama/genética , Reparo do DNA , Endopeptidases/genética , Regulação Neoplásica da Expressão Gênica , RecQ Helicases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Endopeptidases/metabolismo , Feminino , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Camundongos , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteólise , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RecQ Helicases/metabolismo , Análise de Sobrevida , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nucleic Acids Res ; 49(6): 3322-3337, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704464

RESUMO

RPA is a critical factor for DNA replication and replication stress response. Surprisingly, we found that chromatin RPA stability is tightly regulated. We report that the GDP/GTP exchange factor DOCK7 acts as a critical replication stress regulator to promote RPA stability on chromatin. DOCK7 is phosphorylated by ATR and then recruited by MDC1 to the chromatin and replication fork during replication stress. DOCK7-mediated Rac1/Cdc42 activation leads to the activation of PAK1, which subsequently phosphorylates RPA1 at S135 and T180 to stabilize chromatin-loaded RPA1 and ensure proper replication stress response. Moreover, DOCK7 is overexpressed in ovarian cancer and depleting DOCK7 sensitizes cancer cells to camptothecin. Taken together, our results highlight a novel role for DOCK7 in regulation of the replication stress response and highlight potential therapeutic targets to overcome chemoresistance in cancer.


Assuntos
Cromatina/metabolismo , Replicação do DNA , Proteínas Ativadoras de GTPase/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Proteína de Replicação A/metabolismo , Animais , Linhagem Celular Tumoral , Reparo do DNA , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosforilação , Proteólise , Transdução de Sinais , Estresse Fisiológico/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Nucleic Acids Res ; 48(22): 12711-12726, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33237263

RESUMO

PrimPol has been recently identified as a DNA damage tolerant polymerase that plays an important role in replication stress response. However, the regulatory mechanisms of PrimPol are not well defined. In this study, we identify that the deubiquitinase USP36 interferes with degradation of PrimPol to regulate the replication stress response. Mechanistically, USP36 is deubiquitinated following DNA replication stress, which in turn facilitates its upregulation and interaction with PrimPol. USP36 deubiquitinates K29-linked polyubiquitination of PrimPol and increases its protein stability. Depletion of USP36 results in replication stress-related defects and elevates cell sensitivity to DNA-damage agents, such as cisplatin and olaparib. Moreover, USP36 expression positively correlates with the level of PrimPol protein and poor prognosis in patient samples. These findings indicate that the regulation of PrimPol K29-linked ubiquitination by USP36 plays a critical role in DNA replication stress and chemotherapy response.


Assuntos
DNA Primase/genética , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Enzimas Multifuncionais/genética , Neoplasias Ovarianas/genética , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Enzimas Desubiquitinantes/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poliubiquitina/genética , Prognóstico , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos
10.
J Pathol ; 239(2): 186-96, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26969828

RESUMO

The tricho-rhino-phalangeal syndrome 1 gene (TRPS1), which was initially found to be associated with tricho-rhino-phalangeal syndrome, is critical for the development and differentiation of bone, hair follicles and kidney. However, its role in cancer progression is largely unknown. In this study, we demonstrated that down-regulation of TRPS1 correlated with distant metastasis, tumour recurrence and poor survival rate in cancer patients. TRPS1 was frequently down-regulated in high-metastatic cancer cell lines from the breast, colon and nasopharynx. Silencing of TRPS1 stimulated epithelial-mesenchymal transition (EMT), migration and invasion in vitro and metastasis in vivo, while TRPS1 over-expression exhibited the opposite effects. Using quantitative proteomics, FOXA1, a negative regulator of epithelial-mesenchymal transition (EMT), was shown to be down-regulated by TRPS1 knockdown. Ectopic expression of FOXA1 blocked the enhancement of EMT, migration and invasion induced by TRPS1 silencing. Mechanistically, TRPS1, acting as a transcription activator, directly induced FOXA1 transcription by binding to the FOXA1 promoter. We further showed that down-regulation of TRPS1 was induced by miR-373 binding to the 3' UTR of TRPS1. Over-expression of TRPS1, but not TRPS1 3' UTR, blocked the enhancement of migration and invasion induced by miR-373. Taken together, we consider that down-regulation of TRPS1 by miR-373, acting as a transcriptional activator, promotes EMT and metastasis by repressing FOXA1 transcription, expanding upon its previously reported role as a transcription repressor. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Neoplasias da Mama/genética , Neoplasias do Colo/genética , Proteínas de Ligação a DNA/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , MicroRNAs/genética , Neoplasias Nasofaríngeas/genética , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Repressoras , Fatores de Transcrição/genética
11.
J Pathol ; 236(2): 175-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25678401

RESUMO

Amplification of the activated Cdc42-associated kinase 1 (ACK1) gene is frequent in gastric cancer (GC). However, little is known about the clinical roles and molecular mechanisms of ACK1 abnormalities in GC. Here, we found that the ACK1 protein level and ACK1 phosphorylation at Tyr 284 were frequently elevated in GC and associated with poor patient survival. Ectopic ACK1 expression in GC cells induced epithelial-mesenchymal transition (EMT) and promoted migration and invasion in vitro, and metastasis in vivo; the depletion of ACK1 induced the opposite effects. We utilized SILAC quantitative proteomics to discover that the level of the cell cycle-related protein ecdysoneless homologue (ECD) was markedly altered by ACK1. Overexpression of ECD promoted EMT, migration, and invasion in GC, similar to the effects of ACK1 overexpression. Silencing of ECD completely blocked the augmentation of ACK1 overexpression-induced EMT, migration, and invasion. Mechanistically, ACK1 phosphorylated AKT at Thr 308 and Ser 473 and activated the AKT pathway to up-regulate the transcription factor POU2F1, which directly bound to the promoter region of its novel target gene ECD and thus regulated ECD expression in GC cells. Furthermore, the phosphorylation levels of AKT at Thr 308 and Ser 473 and POU2F1 and ECD levels were positively associated with ACK1 levels in clinical GC specimens. Collectively, we have demonstrated that ACK1 promotes EMT, migration, and invasion by activating AKT-POU2F1-ECD signalling in GC cells. ACK1 may be employed as a new prognostic factor and therapeutic target for GC.


Assuntos
Proteínas de Transporte/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fator 1 de Transcrição de Octâmero/metabolismo , Proteínas Tirosina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Gástricas/fisiopatologia , Adulto , Idoso , Animais , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Prognóstico , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Regulação para Cima
12.
Adv Healthc Mater ; 13(3): e2302328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37824839

RESUMO

Diabetic wound is one of the chronic wounds that is difficult to heal, and effective treatment of it still confronts a great challenge. Monitoring the variation of diabetic wound microenvironment (such as hydrogen peroxide (H2 O2 )) can understand the wound state and guide the wound management. Herein, a multifunctional hydrogel with the abilities of monitoring the H2 O2 concentration, alleviating oxidative stress and promoting wound healing is developed, which is prepared by encapsulating manganese-containing bioactive glass (MnBG) and CePO4 :Tb in biocompatible gelatin methacryloyl (GelMA) hydrogel (CPT-MnBG-Gel). On the one hand, the H2 O2 -dependent fluorescence quenching effect of the CePO4 :Tb contributes to visible monitoring of the H2 O2 concentration of wounds via smartphone imaging, and the CPT-MnBG-Gel hydrogel can effectively monitor the H2 O2 level of 10.35-200 µmol L-1 . On the other hand, MnBG can alleviate oxidative stress and promote the proliferation, migration and differentiation of fibroblasts and endothelial cells in vitro owing to the bioactive Mn and Si ions, and in vivo evaluation also demonstrates that the CPT-MnBG-Gel hydrogels can effectively accelerate wound healing. Hence, such multifunctional hydrogel is promising for diabetic wound management and accelerating wound healing.


Assuntos
Diabetes Mellitus , Hidrogéis , Hidrogéis/farmacologia , Células Endoteliais , Diferenciação Celular , Fibroblastos , Cicatrização , Antibacterianos
13.
Natl Sci Rev ; 11(4): nwae035, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38463933

RESUMO

Tissue regeneration is a complicated process that relies on the coordinated effort of the nervous, vascular and immune systems. While the nervous system plays a crucial role in tissue regeneration, current tissue engineering approaches mainly focus on restoring the function of injury-related cells, neglecting the guidance provided by nerves. This has led to unsatisfactory therapeutic outcomes. Herein, we propose a new generation of engineered neural constructs from the perspective of neural induction, which offers a versatile platform for promoting multiple tissue regeneration. Specifically, neural constructs consist of inorganic biomaterials and neural stem cells (NSCs), where the inorganic biomaterials endows NSCs with enhanced biological activities including proliferation and neural differentiation. Through animal experiments, we show the effectiveness of neural constructs in repairing central nervous system injuries with function recovery. More importantly, neural constructs also stimulate osteogenesis, angiogenesis and neuromuscular junction formation, thus promoting the regeneration of bone and skeletal muscle, exhibiting its versatile therapeutic performance. These findings suggest that the inorganic-biomaterial/NSC-based neural platform represents a promising avenue for inducing the regeneration and function recovery of varying tissues and organs.

14.
Phytomedicine ; 129: 155597, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643713

RESUMO

BACKGROUND: Sepsis-induced cardiac dysfunction (SICD) is a serious complication of sepsis that is associated with increased mortality. Ferroptosis has been reported in the SICD. TaoHe ChengQi decoction (THCQD), a classical traditional Chinese medicinal formula, has multiple beneficial pharmacological effects. The potential effects of THCQD on the SICD remain unknown. PURPOSE: To investigate the effect of THCQD on SICD and explore whether this effect is related to the regulation of myocardial ferroptosis through nuclear factor erythroid 2-related factor 2 (Nrf2) activation. METHODS: We induced sepsis in a mouse model using cecal ligation and puncture (CLP) and administered THCQD (2 and 4 g/kg) and dexamethasone (40 mg/kg). Mice mortality was recorded and survival curves were plotted. Echocardiography, hematoxylin and eosin staining, and analysis of serum myocardial injury markers and inflammatory factors were used to evaluate cardiac pathology. Myocardial ferroptosis was detected by quantifying specific biomarker content and protein levels. Through HPLC-Q-Exactive-MS analysis, we identified the components of the THCQD. Network pharmacology analysis and Cellular Thermal Shift Assay (CETSA) were utilized to predict the targets of THCQD for treating SICD. We detected the expression of Nrf2 using Western blotting or immunofluorescence. An RSL3-induced ferroptosis model was established using neonatal rat cardiomyocytes (NRCMs) to further explore the pharmacological mechanism of THCQD. In addition to measuring cell viability, we observed changes in NRCM mitochondria using electron microscopy and JC-1 staining. NRF2 inhibitor ML385 and Nrf2 knockout mice were used to validate whether THCQD exerted protective effects against SICD through Nrf2-mediated ferroptosis signaling. RESULTS: THCQD reduced mortality in septic mice, protected against CLP-induced myocardial injury, decreased systemic inflammatory response, and prevented myocardial ferroptosis. Network pharmacology analysis and CETSA experiments predicted that THCQD may protect against SICD by activating the Nrf2 signaling pathway. Western blotting and immunofluorescence showed that THCQD activated Nrf2 in cardiac tissue. THCQDs consistently mitigated RSL3-induced ferroptosis in NRCM, which is related to Nrf2. Furthermore, the pharmacological inhibition of Nrf2 and genetic Nrf2 knockout partially reversed the protective effects of THCQD on SICD and ferroptosis. CONCLUSION: The effect of THCQD on SICD was achieved by activating Nrf2 and its downstream pathways.


Assuntos
Medicamentos de Ervas Chinesas , Ferroptose , Fator 2 Relacionado a NF-E2 , Sepse , Animais , Masculino , Camundongos , Ratos , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Ferroptose/efeitos dos fármacos , Cardiopatias/tratamento farmacológico , Cardiopatias/etiologia , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Farmacologia em Rede , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
15.
Res Sq ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333340

RESUMO

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase known to regulate immune cell function, cell adhesion, and vascular development. Here, we report that Syk can be expressed in high grade serous ovarian cancer and triple negative breast cancers and promotes DNA double strand break resection, homologous recombination (HR) and therapeutic resistance. We found that Syk is activated by ATM following DNA damage and is recruited to DNA double strand breaks by NBS1. Once at the break site, Syk phosphorylates CtIP, a key mediator of resection and HR, at Thr-847 to promote repair activity, specifically in Syk expressing cancer cells. Syk inhibition or genetic deletion abolished CtIP Thr-847 phosphorylation and overcame the resistant phenotype. Collectively, our findings suggest that Syk drives therapeutic resistance by promoting DNA resection and HR through a novel ATM-Syk-CtIP pathway, and that Syk is a new tumor-specific target to sensitize Syk-expressing tumors to PARPi and other DNA targeted therapy.

16.
Regen Biomater ; 9: rbac055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072263

RESUMO

For the research of biomaterials in bone tissue engineering, it is still a challenge to fabricate bioceramics that overcome brittleness while maintaining the great biological performance. Here, inspired by the toughness of natural materials with hierarchical laminated structure, we presented a directional assembly-sintering approach to fabricate laminated MXene/calcium silicate-based (L-M/CS) bioceramics. Benefiting from the orderly laminated structure, the L-M/CS bioceramics exhibited significantly enhanced toughness (2.23 MPa·m1/2) and high flexural strength (145 MPa), which were close to the mechanical properties of cortical bone. Furthermore, the L-M/CS bioceramics possessed more suitable degradability than traditional CaSiO3 bioceramics due to the newly formed CaTiSiO5 after sintering. Moreover, the L-M/CS bioceramics showed good biocompatibility and could stimulate the expression of osteogenesis-related genes. The mechanism of promoting osteogenic differentiation had been shown to be related to the Wnt signaling pathway. This work not only fabricated calcium silicate-based bioceramics with excellent mechanical and biological properties for bone tissue engineering but also provided a strategy for the combination of bionics and bioceramics.

17.
Genome Instab Dis ; 3(4): 217-226, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36042814

RESUMO

The ufmylation ligase-UFL1 promotes ATM activation by monoufmylating H4 at K31 in a positive-feedback loop after double-strand breaks (DSB) occur, whereas UFM1 Specific Peptidase 2 (UfSP2) suppresses ATM activation, but the mechanism of recruitment of UfSP2 to the DSB finetuning DNA damage response is still not clear. Here, we report that UfSP2 foci formation is delayed compared to UFL1 foci formation following the radiation insult. Mechanistically, UfSP2 binds to the MRN complex in absence of DSB. Irradiation-induced phosphorylation of UfSP2 by ATM leads to the dissociation of UfSP2 from the MRN complex. This phosphorylation can be removed by the phosphatase WIP1, thereby UfSP2 is recruited to the DSBs, deufmylating H4 and suppressing ATM activation. In summary, we identify a mechanism of delicately negative modulation of ATM activation by UfSP2 and rewires ATM activation pathways.

18.
Oncogene ; 41(33): 4018-4027, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35821281

RESUMO

Heme oxygenase-1 (HO-1) is an inducible heme degradation enzyme that plays a cytoprotective role against various oxidative and inflammatory stresses. However, it has also been shown to exert an important role in cancer progression through a variety of mechanisms. Although transcription factors such as Nrf2 are involved in HO-1 regulation, the posttranslational modifications of HO-1 after oxidative insults and the underlying mechanisms remain unexplored. Here, we screened and identified that the deubiquitinase USP7 plays a key role in the control of redox homeostasis through promoting HO-1 deubiquitination and stabilization in hepatocytes. We used low-dose arsenic as a stress model which does not affect the transcriptional level of HO-1, and found that the interaction between USP7 and HO-1 is increased after arsenic exposure, leading to enhanced HO-1 expression and attenuated oxidative damages. Furthermore, HO-1 protein is ubiquitinated at K243 and subjected to degradation under resting conditions; whereas when after arsenic exposure, USP7 itself can be ubiquitinated at K476, thereafter promoting the binding between USP7 and HO-1, finally leading to enhanced HO-1 deubiquitination and protein accumulation. Moreover, depletion of USP7 and HO-1 inhibit liver tumor growth in vivo, and USP7 positively correlates with HO-1 protein level in clinical human hepatocellular carcinoma (HCC) specimens. In summary, our findings reveal a critical role of USP7 as a HO-1 deubiquitinating enzyme in the regulation of oxidative stresses, and suggest that USP7 inhibitor might be a potential therapeutic agent for treating HO-1 overexpressed liver cancers.


Assuntos
Arsênio , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Neoplasias Hepáticas/genética , Estresse Oxidativo , Peptidase 7 Específica de Ubiquitina/genética
19.
Nat Cancer ; 3(9): 1088-1104, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36138131

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers. Characterization of genetic alterations will improve our understanding and therapies for this disease. Here, we report that PDAC with elevated expression of METTL16, one of the 'writers' of RNA N6-methyladenosine modification, may benefit from poly-(ADP-ribose)-polymerase inhibitor (PARPi) treatment. Mechanistically, METTL16 interacts with MRE11 through RNA and this interaction inhibits MRE11's exonuclease activity in a methyltransferase-independent manner, thereby repressing DNA end resection. Upon DNA damage, ATM phosphorylates METTL16 resulting in a conformational change and autoinhibition of its RNA binding. This dissociates the METTL16-RNA-MRE11 complex and releases inhibition of MRE11. Concordantly, PDAC cells with high METTL16 expression show increased sensitivity to PARPi, especially when combined with gemcitabine. Thus, our findings reveal a role for METTL16 in homologous recombination repair and suggest that a combination of PARPi with gemcitabine could be an effective treatment strategy for PDAC with elevated METTL16 expression.


Assuntos
Carcinoma Ductal Pancreático , Proteína Homóloga a MRE11 , Metiltransferases , Neoplasias Pancreáticas , Adenosina Difosfato Ribose , Carcinoma Ductal Pancreático/tratamento farmacológico , DNA , Exonucleases/genética , Humanos , Proteína Homóloga a MRE11/genética , Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , RNA , Mutações Sintéticas Letais , Neoplasias Pancreáticas
20.
Aging (Albany NY) ; 13(12): 16541-16566, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34160364

RESUMO

Fibroblast growth factor receptor 3 (FGFR3) alters frequently across various cancer types and is a common therapeutic target in bladder urothelial carcinoma (BLCA) with FGFR3 variants. Although emerging evidence supports the role of FGFR3 in individual cancer types, no pan-cancer analysis is available. In this work, we used the open comprehensive datasets, covering a total of 10,953 patients with 10,967 samples across 32 TCGA cancer types, to identify the full alteration spectrum of FGFR3. FGFR3 abnormal expression, methylation patterns, alteration frequency, mutation location distribution, functional impact, and prognostic implications differed greatly from cancer to cancer. The overall alteration frequency of FGFR3 was relatively low in all cancers. Targetable mutations were mainly detected in BLCA, and S249C, Y373C, G370C, and R248C were hotspot mutations that could be targeted by an FDA approved erdafitinib. Genetic fusions were mainly observed in glioma, followed by BLCA. FGFR3-TACC3 was the most common fusion type which was proposed as novel therapeutic targets in glioma and was targetable with erdafitinib in BLCA. Lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) were two lung cancer subtypes, FGFR3 fusion and hotspot mutation like S249C were observed more commonly in LUSC but not in LUAD. DNA methylation was correlated with the expression of FGFR3 and its downstream genes in some tumors. FGFG3 abnormal expression and alterations exhibited clinical correlations with patient prognosis in several tumors. This work exhibited the full alteration spectrum of FGFR3 and indicated several new clues for their application as potential therapeutic targets and prognostic indicators.


Assuntos
Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Humanos , Domínios Proteicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA