Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677073

RESUMO

Polystyrene microplastics (PS-MPs) are new types of environmental pollutant that have garnered significant attention in recent years since they were found to cause damage to the human respiratory system when they are inhaled. The pulmonary fibrosis is one of the serious consequences of PS-MPs inhalation. However, the impact and underlying mechanisms of PS-MPs on pulmonary fibrosis are not clear. In this study, we studied the potential lung toxicity and PS-MPs-developed pulmonary fibrosis by long-term intranasal inhalation of PS-MPs. The results showed that after exposing to the PS-MPs, the lungs of model mouse had different levels of damage and fibrosis. Meanwhile, exposing to the PS-MPs resulted in a markedly decrease in glutathione (GSH), an increase in malondialdehyde (MDA), and iron overload in the lung tissue of mice and alveolar epithelial cells (AECs). These findings suggested the occurrence of PS-MP-induced ferroptosis. Inhibitor of ferroptosis (Fer-1) had alleviated the PS-MPs-induced ferroptosis. Mechanically, PS-MPs triggered cell ferroptosis and promoted the development of pulmonary fibrosis via activating the cGAS/STING signaling pathway. Inhibition of cGAS/STING with G150/H151 attenuated pulmonary fibrosis after PS-MPs exposure. Together, these data provided novel mechanistic insights of PS-MPs-induced pulmonary fibrosis and a potential therapeutic paradigm.


Assuntos
Células Epiteliais Alveolares , Ferroptose , Proteínas de Membrana , Microplásticos , Poliestirenos , Fibrose Pulmonar , Transdução de Sinais , Ferroptose/efeitos dos fármacos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Poliestirenos/toxicidade , Camundongos , Transdução de Sinais/efeitos dos fármacos , Microplásticos/toxicidade , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Proteínas de Membrana/metabolismo , Masculino , Camundongos Endogâmicos C57BL
2.
Am J Respir Cell Mol Biol ; 66(6): 648-660, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358396

RESUMO

Thymic stromal lymphopoietin presents in two distinct isoforms: short-form (sfTSLP) and long-form (lfTSLP). lfTSLP promotes inflammation, whereas sfTSLP inhibits inflammation, in allergic asthma. However, little is known about the regulation of lfTSLP and sfTSLP during allergic attack in the asthma airway epithelium. Here, we report that small ubiquitin-like modifier (SUMOylation) was enhanced in house dust mite-induced allergic asthma airway epithelium. Inhibition of SUMOylation significantly alleviated airway T-helper cell type 2 inflammation and lfTSLP expression. Mechanistically, chromobox 4 (CBX4), a SUMOylation E3 ligase, enhanced lfTSLP mRNA translation, but not sfTSLP, through the RNA-binding protein muscle excess (MEX)-3B. MEX-3B promoted lfTSLP translation by binding the lfTSLP mRNA through its K homology domains. Furthermore, CBX4 regulated MEX-3B transcription in human bronchial epithelial cells through enhancing SUMOylation concentrations of the transcription factor TFII-I. In conclusion, we demonstrate an important mechanism whereby CBX4 promotes MEX-3B transcription through enhancing TFII-I SUMOylation and MEX-3B enhances the expression of lfTSLP through binding to the lfTSLP mRNA and promoting its translation. Our findings uncover a novel target of CBX4 for therapeutic agents for lfTSLP-mediated asthma.


Assuntos
Asma , Citocinas , Ligases , Proteínas do Grupo Polycomb , Pyroglyphidae , Sumoilação , Animais , Asma/imunologia , Asma/metabolismo , Citocinas/metabolismo , Humanos , Inflamação , Ligases/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Pyroglyphidae/imunologia , RNA Mensageiro/metabolismo , Linfopoietina do Estroma do Timo
3.
J Cell Mol Med ; 26(19): 4974-4985, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36128650

RESUMO

Orai family are a calcium channel of cell membrane extracellular Ca2+ influx which participates in tissue fibrosis. But the roles of Orai3 have less attention on the mechanism of regulating lung fibrosis. In this study, we found that Orai3 expression was increased significantly in BLM-induced lung fibrosis. The knockdown of Orai3 decreased TGF-ß1-induced fibroblast proliferation, ECM production, activation of NFAT1 and Calpain/ERK signal pathway and glycolysis levels. Orai3 interacting with Orai1 was increased in BLM-induced lung fibrosis and TGF-ß1-induced fibroblast, while the Stim1 interacting with Orai1 and SOCE activity was suppressed, leading in a high and stable extracellular Ca2+ influx. Furthermore, the over-expression of Orai3 did not enhance Orai3 interacting with Orai1 under TGF-ß1 free fibroblast. And then, the deeper mechanism of TGF-ß1-induced increased SEPTIN4 promoted Orai3 interacting with Orai1. Our results indicated that Orai3 could be one of the therapy targets for PF in which remodels Orai channel, suppresses SOCE activity and activated fibroblast to alleviate fibrosis progress.


Assuntos
Fibrose Pulmonar , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Calpaína/metabolismo , Fibroblastos/metabolismo , Humanos , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Fibrose Pulmonar/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
4.
Respir Res ; 23(1): 75, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351157

RESUMO

BACKGROUND: Up-regulation of aerobic glycolysis has been reported as a characterization of asthma and facilitates airway inflammation. We has been previously reported that short isoform thymic stromal lymphopoietin (sTSLP) could reduce inflammation in asthmatic airway epithelial cells. Here we wanted to investigate whether the inhibition of sTSLP on asthma is related to aerobic glycolysis. METHODS: Asthmatic model was established in challenging Male BALB/c mice and 16-HBE (human bronchial epithelial) cell line with house dust mite (HDM). Indicators of glycolysis were assessed to measure whether involve in sTSLP regulating airway epithelial cells inflammation in asthmatic model in vivo and in vitro. RESULTS: sTSLP decreased inflammation of asthmatic airway and aerobic glycolysis in mice. HDM or long isoform thymic stromal lymphopoietin (lTSLP) promoted HIF-1α expression and aerobic glycolysis by miR-223 to target and inhibit VHL (von Hippel-Lindau) expression 16-HBE. Inhibition of aerobic glycolysis restrained HDM- and lTSLP-induced inflammatory cytokines production. sTSLP along had almost no potential to alter aerobic glycolysis of 16-HBE. But sTSLP decreased LDHA (lactate dehydrogenase A) and LD (Lactic acid) levels in BALF, and HIF-1α and LDHA protein levels in airway epithelial cells of asthma mice model. lTSLP and sTSLP both induced formation of TSLPR and IL-7R receptor complex, and lTSLP obviously facilitated phosphorylation of JAK1, JAK2 and STAT5, while sTSLP induced a little phosphorylation of JAK1 and STAT5. CONCLUSION: We identified a novel mechanism that lTSLP could promote inflammatory cytokines production by miR-223/VHL/HIF-1α pathway to upregulate aerobic glycolysis in airway epithelial cells in asthma. This pathway is suppressed by sTSLP through occupying binding site of lTSLP in TSLPR and IL-7R receptor complex.


Assuntos
Asma , Citocinas , Animais , Asma/metabolismo , Citocinas/metabolismo , Epitélio/metabolismo , Glicólise , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Isoformas de Proteínas , Linfopoietina do Estroma do Timo
5.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119524, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348765

RESUMO

The potential role of polycomb chromobox 4 (Cbx4), as a small ubiquitin-like ligase (SUMO) E3 ligase, in the development and exacerbation of asthma remains unclear. Hypoxia inducible factor-1 (HIF-1) is a key transcription factor in the cellular response to hypoxia and contributes to the pathogenesis and progression of a range of diseases, including asthma. Here, we aimed to investigate the interaction of Cbx4 with Hypoxia inducible factor-1α (HIF-1α) and the potent mechanism of action in asthma progression. In present study, in vitro and ex vivo results demonstrated that Cbx4 interacts with HIF-1α protein through its SUMO E3 ligase activity and enhances the sumoylation, which increases HIF-1 transactivation through Cbx4 and promotes the differentiation of Th9 cells, then in turn promotes the process of asthma. Treatment of inhibitors targeting SUMO E3 ligase activity of Cbx4 or HIF-1α can effectively reduce HIF-1α activation and differentiation of Th9 cells, which further attenuates the asthma in mouse model. Current results collectively demonstrated Cbx4 can govern HIF-1α to involve in Th9 cell differentiation promoting asthma by its SUMO E3 ligase activity, providing a new direction for clinical treatment of asthma.


Assuntos
Asma , Ubiquitina-Proteína Ligases , Animais , Camundongos , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Diferenciação Celular , Asma/genética , Hipóxia
6.
Int Immunopharmacol ; 94: 107488, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33640857

RESUMO

MicroRNA-181b (miR-181b) has been well noted with anti-inflammatory properties in several pathological conditions. It has also been suggested to be downregulated in patients with asthma. In this study, we explored the function of miR-181b in airway remodeling in asthmatic mice and the molecular mechanism. A mouse model with asthma was induced by ovalbumin (OVA) challenge, and miR-181b was found to be downregulated in lung tissues in the OVA-challenged mice. Overexpression of miR-181b was introduced in mice, after which the respiratory resistance, inflammatory infiltration, mucus production, and epithelial-mesenchymal transition (EMT) and fibrosis in mouse airway tissues were decreased. The integrated bioinformatics analysis suggested long non-coding RNA (lncRNA) TUG1 as a sponge for miR-181b. miR-181 directly targeted high mobility group box 1 (HMGB1) mRNA. HMGB1 was suggested to enhance activation of the nuclear factor kappa B (NF-κB) signaling. Further upregulation of lncRNA TUG1 blocked the protective functions of miR-181b in asthmatic mice. To conclude, this study evidenced that lncRNA TUG1 reinforces HMGB1 expression through sequestering microRNA-181b, which activates the NF-κB signaling pathway and promotes airway remodeling in asthmatic mice. This study may provide novel ideas in asthma management.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Proteína HMGB1/imunologia , MicroRNAs/imunologia , RNA Longo não Codificante/imunologia , Remodelação das Vias Aéreas/genética , Alérgenos , Animais , Asma/genética , Asma/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteína HMGB1/genética , Pulmão/patologia , Camundongos Endogâmicos BALB C , Muco/imunologia , NF-kappa B/imunologia , Ovalbumina , Transdução de Sinais
7.
Int J Mol Med ; 37(5): 1189-98, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035254

RESUMO

Recent studies have indicated that high-mobility group box 1 protein (HMGB1) and the receptor for advanced glycation end-products (RAGE) contribute to the pathogenesis of asthma. However, whether the activation of the HMGB1/RAGE axis mediates airway epithelial barrier dysfunction remains unknown. Thus, the aim of this study was to examine the effects of HMGB1 and its synergistic action with interleukin (IL)-1ß on airway epithelial barrier properties. We evaluated the effects of recombinant human HMGB1 alone or in combination with IL-1ß on ionic and macromolecular barrier permeability, by culturing air-liquid interface 16HBE cells with HMGB1 to mimic the differentiated epithelium. Western blot analysis and immunofluorescence staining were utilized to examine the level and structure of major junction proteins, namely E-cadherin, ß-catenin, occludin and claudin-1. Furthermore, we examined the effects of RAGE neutralizing antibodies and mitogen-activated protein kinase (MAPK) inhibitors on epithelial barrier properties in order to elucidate the mechanisms involved. HMGB1 increased FITC-dextran permeability, but suppressed epithelial resistance in a dose- and time-dependent manner. HMGB1-mediated barrier hyperpermeability was accompanied by a disruption of cell-cell contacts, the selective downregulation of occludin and claudin-1, and the redistribution of E-cadherin and ß-catenin. HMGB1 in synergy with IL-1ß induced a similar, but greater barrier hyperpermeability and induced the disruption of junction proteins. Furthermore, HMGB1 elicited the activation of the RAGE/extracellular signal-related kinase (ERK)1/2 signaling pathway, which correlated with barrier dysfunction in the 16HBE cells. Anti-RAGE antibody and the ERK1/2 inhibitor, U0126, attenuated the HMGB1-mediated changes in barrier permeability, restored the expression levels of occludin and claudin-1 and pevented the redistribution of E-cadherin and ß-catenin. Taken together, the findings of our study demonstrate that HMGB1 is capable of inducing potent effects on epithelial barrier function and that RAGE/ERK1/2 is a key signaling pathway involved in the crosstalk between formations of junction proteins and epithelial barrier dysfunction.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína HMGB1/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Mucosa Respiratória/metabolismo , Transdução de Sinais , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Junções Intercelulares/metabolismo , Interleucina-1beta/metabolismo , Íons/metabolismo , Substâncias Macromoleculares/metabolismo , Permeabilidade , Mucosa Respiratória/patologia
8.
Nan Fang Yi Ke Da Xue Xue Bao ; 26(12): 1690-3, 2006 Dec.
Artigo em Zh | MEDLINE | ID: mdl-17259098

RESUMO

OBJECTIVE: To investigate the effect of therapeutic ultrasound-induced microbubble destruction on the microcirculation of rat skeletal muscle. METHODS: Thirty SD rats were randomized into 5 groups (n=6), namely normal saline, microbubble, ultrasound, high-energy ultrasound microbubble and low-energy ultrasound microbubble groups. Before and after the treatments, the diameter and blood flow velocity in the microvessels in the skeletal muscle were measured, and the structural changes of the injured microvessels observed by electron microscopy. RESULTS: Microbubble cavitation did not produce significant effect on the mean arterial pressure and diameter of microvessels in rat skeletal muscle (P>0.05), but the blood flow velocity was obviously lowered and blood flow volume reduced in the microvessels. The reduction of the flow velocity and blood flow volume and their subsequent recovery were associated with ultrasound energy, and in the low ultrasound energy group, the flow velocity and blood flow volume in the of venules recovered obviously after about 15 min, which, however, took approximately 1 h for the arterioles. In contrast, recovery of the flow velocity and blood flow volume in the microvessels took more than 2 h in the high ultrasound energy group. Cavitation resulted in endothelium cell rupture, widening of the endothelial interspace and entry of the red blood cells into the extravascular tissues as revealed by electron microscopy, but no rupture of the lining endothelium was observed 2 h after the treatment. CONCLUSIONS: Endothelium cell rupture induced by microbubble cavitation may affect the local microcirculation, and lower ultrasound energy exposure is associated with milder endothelial injury and more rapid recovery.


Assuntos
Microbolhas , Músculo Esquelético/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Células Endoteliais/patologia , Células Endoteliais/ultraestrutura , Feminino , Masculino , Microcirculação , Microscopia Eletrônica , Microesferas , Ratos , Ratos Sprague-Dawley , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA