Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39349619

RESUMO

BACKGROUND: Genetic testing to identify germline high-risk pathogenic variants in breast cancer susceptibility genes is increasingly part of the breast cancer diagnostic pathway. Novel patient-centred pathways may offer opportunity to expand capacity and reduce turnaround time. METHODS: We recruited 1140 women with unselected breast cancer to undergo germline genetic testing through the BRCA-DIRECT pathway (which includes a digital platform, postal saliva sampling and a genetic counsellor telephone helpline). Ahead of consenting to the test, participants were randomised to receive information about genetic testing digitally (569/1140, 49.9%) or via a pre-test genetic counselling consultation (571/1140, 50.1%). RESULTS: 1001 (87.8%) participants progressed to receive their pre-test information and consented to testing. The primary outcome, uptake of genetic testing, was higher amongst participants randomised to receive digital information compared with those randomised to a pre-test genetic counselling consultation (90.8% (95% CI: 88.5% to 93.1%) vs 84.7% (95% CI: 81.8% to 87.6%), p = 0.002, adjusted for participant age and site). Non-inferiority was observed in relation to patient knowledge, anxiety, and satisfaction. CONCLUSIONS: Findings demonstrate that standardised, digital information offers a non-inferior alternative to conventional genetic counselling, and an end-to-end patient-centred, digital pathway (supported by genetic counselling hotline) could feasibly be implemented into breast oncology settings. CLINICAL TRIAL REGISTRATION: The study is registered with, and protocol available on, ClinicalTrials.gov (NCT04842799).

2.
Haematologica ; 109(4): 1069-1081, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37794795

RESUMO

Advances in the clinical management of pediatric B-cell acute lymphoblastic leukemia (B-ALL) have dramatically improved outcomes for this disease. However, relapsed and high-risk disease still contribute to significant numbers of treatment failures. Development of new, broad range therapies is urgently needed for these cases. We previously reported the susceptibility of ETV6-RUNX1+ pediatric B-ALL to inhibition of signal transducer and activator of transcription 3 (STAT3) activity. In the present study, we demonstrate that pharmacological or genetic inhibition of STAT3 results in p53 induction and that CRISPR-mediated TP53 knockout substantially reverses susceptibility to STAT3 inhibition. Furthermore, we demonstrate that sensitivity to STAT3 inhibition in patient-derived xenograft (PDX) B-ALL samples is not restricted to any particular disease subtype, but rather depends on TP53 status, the only resistant samples being TP53 mutant. Induction of p53 following STAT3 inhibition is not directly dependent on MDM2 but correlates with degradation of MDM4. As such, STAT3 inhibition exhibits synergistic in vitro and in vivo anti-leukemia activity when combined with MDM2 inhibition. Taken together with the relatively low frequency of TP53 mutations in this disease, these data support the future development of combined STAT3/ MDM2 inhibition in the therapy of refractory and relapsed pediatric B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Criança , Humanos , Proteínas de Ciclo Celular/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Recidiva , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
J Pathol ; 259(2): 119-124, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36426824

RESUMO

The FOS gene family has been implicated in tumourigenesis across several tumour types, particularly mesenchymal tumours. The rare fibrous tumour desmoplastic fibroblastoma is characterised by overexpression of FOSL1. However, previous studies using cytogenetic and molecular techniques did not identify an underlying somatic change involving the FOSL1 gene to explain this finding. Prompted by an unusual index case, we report the discovery of a novel FOSL1 rearrangement in desmoplastic fibroblastoma using whole-genome and targeted RNA sequencing. We investigated 15 desmoplastic fibroblastomas and 15 fibromas of tendon sheath using immunohistochemistry, in situ hybridisation and targeted RNA sequencing. Rearrangements in FOSL1 and FOS were identified in 10/15 and 2/15 desmoplastic fibroblastomas respectively, which mirrors the pattern of FOS rearrangements observed in benign bone and vascular tumours. Fibroma of tendon sheath, which shares histological features with desmoplastic fibroblastoma, harboured USP6 rearrangements in 9/15 cases and did not demonstrate rearrangements in any of the four FOS genes. The overall concordance between FOSL1 immunohistochemistry and RNA sequencing results was 90%. These findings illustrate that FOSL1 and FOS rearrangements are a recurrent event in desmoplastic fibroblastoma, establishing this finding as a useful diagnostic adjunct and expanding the spectrum of tumours driven by FOS gene family alterations. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Fibroma Desmoplásico , Fibroma , Neoplasias de Tecidos Moles , Humanos , Fibroma Desmoplásico/diagnóstico , Fibroma Desmoplásico/genética , Fibroma Desmoplásico/patologia , Fibroma/genética , Rearranjo Gênico , Hibridização In Situ , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Ubiquitina Tiolesterase/genética
4.
N Engl J Med ; 383(19): 1860-1865, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33211929

RESUMO

Childhood tumors that occur synchronously in different anatomical sites usually represent metastatic disease. However, such tumors can be independent neoplasms. We investigated whether cases of bilateral neuroblastoma represented independent tumors in two children with pathogenic germline mutations by genotyping somatic mutations shared between tumors and blood. Our results suggested that in both children, the lineages that had given rise to the tumors had segregated within the first cell divisions of the zygote, without being preceded by a common premalignant clone. In one patient, the tumors had parallel evolution, including distinct second hits in SMARCA4, a putative predisposition gene for neuroblastoma. These findings portray cases of bilateral neuroblastoma as having independent lesions mediated by a germline predisposition. (Funded by Children with Cancer UK and Wellcome.).


Assuntos
Neoplasias Abdominais/genética , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias Primárias Múltiplas/genética , Neuroblastoma/genética , Neoplasias Abdominais/patologia , Neoplasias das Glândulas Suprarrenais/patologia , Pré-Escolar , DNA Helicases/genética , Feminino , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Humanos , Masculino , Neuroblastoma/patologia , Proteínas Nucleares/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Translocação Genética
5.
BMC Cancer ; 23(1): 257, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941575

RESUMO

BACKGROUND: Circulating tumour DNA (ctDNA) to detect minimal residual disease (MRD) is emerging as a biomarker to predict recurrence in patients with curatively treated early stage colorectal cancer (CRC). ctDNA risk stratifies patients to guide adjuvant treatment decisions. We are conducting the UK's first multi-centre, prospective, randomised study to determine whether a de-escalation strategy using ctDNA to guide adjuvant chemotherapy (ACT) decisions is non-inferior to standard of care (SOC) chemotherapy, as measured by 3-year disease free survival (DFS) in patients with resected CRC with no evidence of MRD (ctDNA negative post-operatively). In doing so we may be able to spare patients unnecessary chemotherapy and associated toxicity and achieve significant cost savings for the National Health Service (NHS). METHODS: We are recruiting patients with fully resected high risk stage II and stage III CRC who are being considered for ACT into the study which uses results from a plasma-only ctDNA assay to guide treatment decisions. Eligible patients are randomised 1:1 to receive ctDNA-guided chemotherapy versus SOC chemotherapy. The primary endpoint is the difference in DFS at 3 years between the trial arms. Secondary endpoints include the proportion of patients in the ctDNA-guided arm who are ctDNA negative post-operatively and receive de-escalated ACT compared to the standard arm, the difference in overall survival (OS), neurotoxicity and quality of life between the arms, and the cost-effectiveness of ctDNA-guided therapy compared to SOC treatment. We hypothesise that using a ctDNA-guided approach to ACT decisions is non-inferior to SOC. Target accrual is 1621 patients over 4 years, which will provide a power of 80% with an alpha of 0.1 to demonstrate non-inferiority with a margin of 1.25 in survival of the ctDNA-guided approach compared to SOC. We anticipate approximately 50 UK centres will participate. The study opened with the Guardant Reveal plasma-only ctDNA assay in August 2022. DISCUSSION: The trial will determine whether ctDNA guided ACT is non-inferior to SOC ACT in patients with fully resected high risk stage II and stage III resected CRC, with the potential to significantly reduce unnecessary ACT and the toxicity associated with it. TRIAL REGISTRATION: NCT04050345.


Assuntos
Neoplasias Colorretais , Medicina Estatal , Humanos , Qualidade de Vida , Estudos Prospectivos , Padrão de Cuidado , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/cirurgia , Quimioterapia Adjuvante/métodos , Intervalo Livre de Doença
6.
BMC Cancer ; 23(1): 380, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101114

RESUMO

BACKGROUND: Dihydropyrimidine dehydrogenase (DPD) is a key enzyme in the metabolism of fluoropyrimidines. Variations in the encoding DPYD gene are associated with severe fluoropyrimidine toxicity and up-front dose reductions are recommended. We conducted a retrospective study to evaluate the impact of implementing DPYD variant testing for patients with gastrointestinal cancers in routine clinical practice in a high volume cancer centre in London, United Kingdom. METHODS: Patients receiving fluoropyrimidine chemotherapy for gastrointestinal cancer prior to, and following the implementation of DPYD testing were identified retrospectively. After November 2018, patients were tested for DPYD variants c.1905+1G>A (DPYD*2A), c.2846A>T (DPYD rs67376798), c.1679T>G (DPYD*13), c.1236G>A (DPYD rs56038477), c.1601G>A (DPYD*4) prior to commencing fluoropyrimidines alone or in combination with other cytotoxics and/or radiotherapy. Patients with a DPYD heterozygous variant received an initial dose reduction of 25-50%. Toxicity by CTCAE v4.03 criteria was compared between DPYD heterozygous variant and wild type carriers. RESULTS: Between 1st December 2018 and 31st July 2019, 370 patients who were fluoropyrimidine naïve underwent a DPYD genotyping test prior to receiving a capecitabine (n = 236, 63.8%) or 5FU (n = 134, 36.2%) containing chemotherapy regimen. 33 patients (8.8%) were heterozygous DPYD variant carriers and 337 (91.2%) were wild type. The most prevalent variants were c.1601G > A (n = 16) and c.1236G > A (n = 9). Mean relative dose intensity for the first dose was 54.2% (range 37.5-75%) for DPYD heterozygous carriers and 93.2% (42.9-100%) for DPYD wild type carriers. Overall grade 3 or worse toxicity was similar in DPYD variant carriers (4/33, 12.1%) as compared to wild-type carriers (89/337, 25.7%; P = 0.0924). CONCLUSIONS: Our study demonstrates successful routine DPYD mutation testing prior to the initiation of fluoropyrimidine chemotherapy with high uptake. In patients with DPYD heterozygous variants with pre-emptive dose reductions, high incidence of severe toxicity was not observed. Our data supports routine DPYD genotype testing prior to commencement of fluoropyrimidine chemotherapy.


Assuntos
Di-Hidrouracila Desidrogenase (NADP) , Neoplasias Gastrointestinais , Humanos , Di-Hidrouracila Desidrogenase (NADP)/genética , Estudos Retrospectivos , Fluoruracila/efeitos adversos , Farmacogenética , Capecitabina , Genótipo , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética
7.
J Med Genet ; 59(12): 1179-1188, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35868849

RESUMO

BACKGROUND: Germline genetic testing affords multiple opportunities for women with breast cancer, however, current UK NHS models for delivery of germline genetic testing are clinician-intensive and only a minority of breast cancer cases access testing. METHODS: We designed a rapid, digital pathway, supported by a genetics specialist hotline, for delivery of germline testing of BRCA1/BRCA2/PALB2 (BRCA-testing), integrated into routine UK NHS breast cancer care. We piloted the pathway, as part of the larger BRCA-DIRECT study, in 130 unselected patients with breast cancer and gathered preliminary data from a randomised comparison of delivery of pretest information digitally (fully digital pathway) or via telephone consultation with a genetics professional (partially digital pathway). RESULTS: Uptake of genetic testing was 98.4%, with good satisfaction reported for both the fully and partially digital pathways. Similar outcomes were observed in both arms regarding patient knowledge score and anxiety, with <5% of patients contacting the genetics specialist hotline. All progression criteria established for continuation of the study were met. CONCLUSION: Pilot data indicate preliminary demonstration of feasibility and acceptability of a fully digital pathway for BRCA-testing and support proceeding to a full powered study for evaluation of non-inferiority of the fully digital pathway, detailed quantitative assessment of outcomes and operational economic analyses. TRIAL REGISTRATION NUMBER: ISRCTN87845055.


Assuntos
Neoplasias da Mama , Encaminhamento e Consulta , Humanos , Feminino , Medicina Estatal , Telefone , Testes Genéticos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Reino Unido
8.
Haematologica ; 107(3): 574-582, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596643

RESUMO

Immune thrombotic thrombocytopenic purpura (iTTP) is an ultra-rare, life-threatening disorder, mediated through severe ADAMTS13 deficiency causing multi-system micro-thrombi formation, and has specific human leukocyte antigen associations. We undertook a large genome-wide association study to investigate additional genetically distinct associations in iTTP. We compared two iTTP patient cohorts with controls, following standardized genome-wide quality control procedures for single-nucleotide polymorphisms and imputed HLA types. Associations were functionally investigated using expression quantitative trait loci (eQTL), and motif binding prediction software. Independent associations consistent with previous findings in iTTP were detected at the HLA locus and in addition a novel association was detected on chromosome 3 (rs9884090, P=5.22x10-10, odds ratio 0.40) in the UK discovery cohort. Meta-analysis, including the French replication cohort, strengthened the associations. The haploblock containing rs9884090 is associated with reduced protein O-glycosyltransferase 1 (POGLUT1) expression (eQTL P<0.05), and functional annotation suggested a potential causative variant (rs71767581). This work implicates POGLUT1 in iTTP pathophysiology and suggests altered post-translational modification of its targets may influence disease susceptibility.


Assuntos
Púrpura Trombocitopênica Idiopática , Púrpura Trombocitopênica Trombótica , Proteína ADAMTS13/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Glucosiltransferases/genética , Humanos , Púrpura Trombocitopênica Idiopática/genética , Púrpura Trombocitopênica Trombótica/genética
9.
Lancet Oncol ; 21(10): 1296-1308, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32919527

RESUMO

BACKGROUND: Circulating tumour DNA (ctDNA) testing might provide a current assessment of the genomic profile of advanced cancer, without the need to repeat tumour biopsy. We aimed to assess the accuracy of ctDNA testing in advanced breast cancer and the ability of ctDNA testing to select patients for mutation-directed therapy. METHODS: We did an open-label, multicohort, phase 2a, platform trial of ctDNA testing in 18 UK hospitals. Participants were women (aged ≥18 years) with histologically confirmed advanced breast cancer and an Eastern Cooperative Oncology Group performance status 0-2. Patients had completed at least one previous line of treatment for advanced breast cancer or relapsed within 12 months of neoadjuvant or adjuvant chemotherapy. Patients were recruited into four parallel treatment cohorts matched to mutations identified in ctDNA: cohort A comprised patients with ESR1 mutations (treated with intramuscular extended-dose fulvestrant 500 mg); cohort B comprised patients with HER2 mutations (treated with oral neratinib 240 mg, and if oestrogen receptor-positive with intramuscular standard-dose fulvestrant); cohort C comprised patients with AKT1 mutations and oestrogen receptor-positive cancer (treated with oral capivasertib 400 mg plus intramuscular standard-dose fulvestrant); and cohort D comprised patients with AKT1 mutations and oestrogen receptor-negative cancer or PTEN mutation (treated with oral capivasertib 480 mg). Each cohort had a primary endpoint of confirmed objective response rate. For cohort A, 13 or more responses among 78 evaluable patients were required to infer activity and three or more among 16 were required for cohorts B, C, and D. Recruitment to all cohorts is complete and long-term follow-up is ongoing. This trial is registered with ClinicalTrials.gov, NCT03182634; the European Clinical Trials database, EudraCT2015-003735-36; and the ISRCTN registry, ISRCTN16945804. FINDINGS: Between Dec 21, 2016, and April 26, 2019, 1051 patients registered for the study, with ctDNA results available for 1034 patients. Agreement between ctDNA digital PCR and targeted sequencing was 96-99% (n=800, kappa 0·89-0·93). Sensitivity of digital PCR ctDNA testing for mutations identified in tissue sequencing was 93% (95% CI 83-98) overall and 98% (87-100) with contemporaneous biopsies. In all cohorts, combined median follow-up was 14·4 months (IQR 7·0-23·7). Cohorts B and C met or exceeded the target number of responses, with five (25% [95% CI 9-49]) of 20 patients in cohort B and four (22% [6-48]) of 18 patients in cohort C having a response. Cohorts A and D did not reach the target number of responses, with six (8% [95% CI 3-17]) of 74 in cohort A and two (11% [1-33]) of 19 patients in cohort D having a response. The most common grade 3-4 adverse events were raised gamma-glutamyltransferase (13 [16%] of 80 patients; cohort A); diarrhoea (four [25%] of 20; cohort B); fatigue (four [22%] of 18; cohort C); and rash (five [26%] of 19; cohort D). 17 serious adverse reactions occurred in 11 patients, and there was one treatment-related death caused by grade 4 dyspnoea (in cohort C). INTERPRETATION: ctDNA testing offers accurate, rapid genotyping that enables the selection of mutation-directed therapies for patients with breast cancer, with sufficient clinical validity for adoption into routine clinical practice. Our results demonstrate clinically relevant activity of targeted therapies against rare HER2 and AKT1 mutations, confirming these mutations could be targetable for breast cancer treatment. FUNDING: Cancer Research UK, AstraZeneca, and Puma Biotechnology.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , DNA Tumoral Circulante/sangue , Terapia de Alvo Molecular , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/uso terapêutico , Genótipo , Humanos , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , Estudos Prospectivos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Quinolinas/uso terapêutico , Receptor ErbB-2/genética , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Resultado do Tratamento
10.
Genes Chromosomes Cancer ; 58(6): 341-356, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30474255

RESUMO

Immortalizing primary cells with human telomerase reverse transcriptase (hTERT) has been common practice to enable primary cells to be of extended use in the laboratory because they avoid replicative senescence. Studying exogenously expressed hTERT in cells also affords scientists models of early carcinogenesis and telomere behavior. Control and the premature ageing disease-Hutchinson-Gilford progeria syndrome (HGPS) primary dermal fibroblasts, with and without the classical G608G mutation have been immortalized with exogenous hTERT. However, hTERT immortalization surprisingly elicits genome reorganization not only in disease cells but also in the normal control cells, such that whole chromosome territories normally located at the nuclear periphery in proliferating fibroblasts become mislocalized in the nuclear interior. This includes chromosome 18 in the control fibroblasts and both chromosomes 18 and X in HGPS cells, which physically express an isoform of the LINC complex protein SUN1 that has previously only been theoretical. Additionally, this HGPS cell line has also become genomically unstable and has a tetraploid karyotype, which could be due to the novel SUN1 isoform. Long-term treatment with the hTERT inhibitor BIBR1532 enabled the reduction of telomere length in the immortalized cells and resulted that these mislocalized internal chromosomes to be located at the nuclear periphery, as assessed in actively proliferating cells. Taken together, these findings reveal that elongated telomeres lead to dramatic chromosome mislocalization, which can be restored with a drug treatment that results in telomere reshortening and that a novel SUN1 isoform combined with elongated telomeres leads to genomic instability. Thus, care should be taken when interpreting data from genomic studies in hTERT-immortalized cell lines.


Assuntos
Cariótipo Anormal , Instabilidade Genômica , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , Progéria/genética , Telomerase/genética , Homeostase do Telômero , Linhagem Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Telomerase/metabolismo
12.
Clin Chem ; 64(11): 1626-1635, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150316

RESUMO

BACKGROUND: Circulating free DNA sequencing (cfDNA-Seq) can portray cancer genome landscapes, but highly sensitive and specific technologies are necessary to accurately detect mutations with often low variant frequencies. METHODS: We developed a customizable hybrid-capture cfDNA-Seq technology using off-the-shelf molecular barcodes and a novel duplex DNA molecule identification tool for enhanced error correction. RESULTS: Modeling based on cfDNA yields from 58 patients showed that this technology, requiring 25 ng of cfDNA, could be applied to >95% of patients with metastatic colorectal cancer (mCRC). cfDNA-Seq of a 32-gene, 163.3-kbp target region detected 100% of single-nucleotide variants, with 0.15% variant frequency in spike-in experiments. Molecular barcode error correction reduced false-positive mutation calls by 97.5%. In 28 consecutively analyzed patients with mCRC, 80 out of 91 mutations previously detected by tumor tissue sequencing were called in the cfDNA. Call rates were similar for point mutations and indels. cfDNA-Seq identified typical mCRC driver mutations in patients in whom biopsy sequencing had failed or did not include key mCRC driver genes. Mutations only called in cfDNA but undetectable in matched biopsies included a subclonal resistance driver mutation to anti-EGFR antibodies in KRAS, parallel evolution of multiple PIK3CA mutations in 2 cases, and TP53 mutations originating from clonal hematopoiesis. Furthermore, cfDNA-Seq off-target read analysis allowed simultaneous genome-wide copy number profile reconstruction in 20 of 28 cases. Copy number profiles were validated by low-coverage whole-genome sequencing. CONCLUSIONS: This error-corrected, ultradeep cfDNA-Seq technology with a customizable target region and publicly available bioinformatics tools enables broad insights into cancer genomes and evolution. CLINICALTRIALSGOV IDENTIFIER: NCT02112357.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Variações do Número de Cópias de DNA/genética , Análise Mutacional de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Estudo de Associação Genômica Ampla , Humanos , Metástase Neoplásica , Sensibilidade e Especificidade
14.
Nat Cancer ; 5(9): 1334-1351, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38997466

RESUMO

Cancer evolution lays the groundwork for predictive oncology. Testing evolutionary metrics requires quantitative measurements in controlled clinical trials. We mapped genomic intratumor heterogeneity in locally advanced prostate cancer using 642 samples from 114 individuals enrolled in clinical trials with a 12-year median follow-up. We concomitantly assessed morphological heterogeneity using deep learning in 1,923 histological sections from 250 individuals. Genetic and morphological (Gleason) diversity were independent predictors of recurrence (hazard ratio (HR) = 3.12 and 95% confidence interval (95% CI) = 1.34-7.3; HR = 2.24 and 95% CI = 1.28-3.92). Combined, they identified a group with half the median time to recurrence. Spatial segregation of clones was also an independent marker of recurrence (HR = 2.3 and 95% CI = 1.11-4.8). We identified copy number changes associated with Gleason grade and found that chromosome 6p loss correlated with reduced immune infiltration. Matched profiling of relapse, decades after diagnosis, confirmed that genomic instability is a driving force in prostate cancer progression. This study shows that combining genomics with artificial intelligence-aided histopathology leads to the identification of clinical biomarkers of evolution.


Assuntos
Gradação de Tumores , Recidiva Local de Neoplasia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Recidiva Local de Neoplasia/genética , Variações do Número de Cópias de DNA , Progressão da Doença , Instabilidade Genômica , Idoso , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Aprendizado Profundo
15.
Nat Med ; 30(7): 1905-1912, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956197

RESUMO

Clinical whole-genome sequencing (WGS) has been shown to deliver potential benefits to children with cancer and to alter treatment in high-risk patient groups. It remains unknown whether offering WGS to every child with suspected cancer can change patient management. We collected WGS variant calls and clinical and diagnostic information from 281 children (282 tumors) across two English units (n = 152 from a hematology center, n = 130 from a solid tumor center) where WGS had become a routine test. Our key finding was that variants uniquely attributable to WGS changed the management in ~7% (20 out of 282) of cases while providing additional disease-relevant findings, beyond standard-of-care molecular tests, in 108 instances for 83 (29%) cases. Furthermore, WGS faithfully reproduced every standard-of-care molecular test (n = 738) and revealed several previously unknown genomic features of childhood tumors. We show that WGS can be delivered as part of routine clinical care to children with suspected cancer and can change clinical management by delivering unexpected genomic insights. Our experience portrays WGS as a clinically impactful assay for routine practice, providing opportunities for assay consolidation and for delivery of molecularly informed patient care.


Assuntos
Neoplasias , Sequenciamento Completo do Genoma , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/diagnóstico , Criança , Masculino , Pré-Escolar , Feminino , Adolescente , Lactente , Testes Genéticos/métodos , Genoma Humano/genética , Genômica/métodos , Recém-Nascido
16.
Clin Cancer Res ; 29(20): 4166-4177, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37490393

RESUMO

PURPOSE: Prognostic and predictive biomarkers to cyclin-dependent kinases 4 and 6 inhibitors are lacking. Circulating tumor DNA (ctDNA) can be used to profile these patients and dynamic changes in ctDNA could be an early predictor of treatment efficacy. Here, we conducted plasma ctDNA profiling in patients from the PEARL trial comparing palbociclib+fulvestrant versus capecitabine to investigate associations between baseline genomic landscape and on-treatment ctDNA dynamics with treatment efficacy. EXPERIMENTAL DESIGN: Correlative blood samples were collected at baseline [cycle 1-day 1 (C1D1)] and prior to treatment [cycle 1-day 15 (C1D15)]. Plasma ctDNA was sequenced with a custom error-corrected capture panel, with both univariate and multivariate Cox models used for treatment efficacy associations. A prespecified methodology measuring ctDNA changes in clonal mutations between C1D1 and C1D15 was used for the on-treatment ctDNA dynamic model. RESULTS: 201 patients were profiled at baseline, with ctDNA detection associated with worse progression-free survival (PFS)/overall survival (OS). Detectable TP53 mutation showed worse PFS and OS in both treatment arms, even after restricting population to baseline ctDNA detection. ESR1 mutations were associated with worse OS overall, which was lost when restricting population to baseline ctDNA detection. PIK3CA mutations confer worse OS only to patients on the palbociclib+fulvestrant treatment arm. ctDNA dynamics analysis (n = 120) showed higher ctDNA suppression in the capecitabine arm. Patients without ctDNA suppression showed worse PFS in both treatment arms. CONCLUSIONS: We show impaired survival irrespective of endocrine or chemotherapy-based treatments for patients with hormone receptor-positive/HER2-negative metastatic breast cancer harboring plasma TP53 mutations. Early ctDNA suppression may provide treatment efficacy predictions. Further validation to fully demonstrate clinical utility of ctDNA dynamics is warranted.

17.
Front Pediatr ; 10: 957944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467471

RESUMO

Circulating cell-free DNA (cfDNA) analysis has the potential to revolutionise the care of patients with cancer and is already moving towards standard of care in some adult malignancies. Evidence for the utility of cfDNA analysis in paediatric cancer patients is also accumulating. In this review we discuss the limitations of blood-based assays in patients with brain tumours and describe the evidence supporting cerebrospinal fluid (CSF) cfDNA analysis. We make recommendations for CSF cfDNA processing to aid the standardisation and technical validation of future assays. We discuss the considerations for interpretation of cfDNA analysis and highlight promising future directions. Overall, cfDNA profiling shows great potential as an adjunct to the analysis of biopsy tissue in paediatric cancer patients, with the potential to provide a genetic molecular profile of the tumour when tissue biopsy is not feasible. However, to fully realise the potential of cfDNA analysis for children with brain tumours larger prospective studies incorporating serial CSF sampling are required.

18.
Eur J Cancer ; 162: 209-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933802

RESUMO

OBJECTIVE: Clinical diagnostic sequencing of circulating tumour DNA (ctDNA) is well advanced for adult patients, but application to paediatric cancer patients lags behind. METHODS: To address this, we have developed a clinically relevant (67 gene) NGS capture panel and accompanying workflow that enables sensitive and reliable detection of low-frequency genetic variants in cell-free DNA (cfDNA) from children with solid tumours. We combined gene panel sequencing with low pass whole-genome sequencing of the same library to inform on genome-wide copy number changes in the blood. RESULTS: Analytical validity was evaluated using control materials, and the method was found to be highly sensitive (0.96 for SNVs and 0.97 for INDEL), specific (0.82 for SNVs and 0.978 for INDEL), repeatable (>0.93 [95% CI: 0.89-0.95]) and reproducible (>0.87 [95% CI: 0.87-0.95]). Potential for clinical application was demonstrated in 39 childhood cancer patients with a spectrum of solid tumours in which the single nucleotide variants expected from tumour sequencing were detected in cfDNA in 94.4% (17/18) of cases with active extracranial disease. In 13 patients, where serial samples were available, we show a close correlation between events detected in cfDNA and treatment response, demonstrate that cfDNA analysis could be a useful tool to monitor disease progression, and show cfDNA sequencing has the potential to identify targetable variants that were not detected in tumour samples. CONCLUSIONS: This is the first pan-cancer DNA sequencing panel that we know to be optimised for cfDNA in children for blood-based molecular diagnostics in paediatric solid tumours.


Assuntos
Ácidos Nucleicos Livres , DNA Tumoral Circulante , Neoplasias , Adulto , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Criança , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Sequenciamento Completo do Genoma/métodos
19.
Cancer Discov ; 12(2): 416-431, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34551970

RESUMO

Somatic mutations in ACVR1 are found in a quarter of children with diffuse intrinsic pontine glioma (DIPG), but there are no ACVR1 inhibitors licensed for the disease. Using an artificial intelligence-based platform to search for approved compounds for ACVR1-mutant DIPG, the combination of vandetanib and everolimus was identified as a possible therapeutic approach. Vandetanib, an inhibitor of VEGFR/RET/EGFR, was found to target ACVR1 (K d = 150 nmol/L) and reduce DIPG cell viability in vitro but has limited ability to cross the blood-brain barrier. In addition to mTOR, everolimus inhibited ABCG2 (BCRP) and ABCB1 (P-gp) transporters and was synergistic in DIPG cells when combined with vandetanib in vitro. This combination was well tolerated in vivo and significantly extended survival and reduced tumor burden in an orthotopic ACVR1-mutant patient-derived DIPG xenograft model. Four patients with ACVR1-mutant DIPG were treated with vandetanib plus an mTOR inhibitor, informing the dosing and toxicity profile of this combination for future clinical studies. SIGNIFICANCE: Twenty-five percent of patients with the incurable brainstem tumor DIPG harbor somatic activating mutations in ACVR1, but there are no approved drugs targeting the receptor. Using artificial intelligence, we identify and validate, both experimentally and clinically, the novel combination of vandetanib and everolimus in these children based on both signaling and pharmacokinetic synergies.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Receptores de Ativinas Tipo I/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias do Tronco Encefálico/tratamento farmacológico , Everolimo/uso terapêutico , Glioma/tratamento farmacológico , Piperidinas/uso terapêutico , Quinazolinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias do Tronco Encefálico/mortalidade , Criança , Pré-Escolar , Reposicionamento de Medicamentos , Everolimo/administração & dosagem , Feminino , Glioma/mortalidade , Humanos , Masculino , Camundongos , Camundongos SCID , Piperidinas/administração & dosagem , Quinazolinas/administração & dosagem , Ratos , Resultado do Tratamento
20.
JCO Precis Oncol ; 6: e2100534, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36265118

RESUMO

PURPOSE: Rhabdomyosarcomas (RMS) are rare neoplasms affecting children and young adults. Efforts to improve patient survival have been undermined by a lack of suitable disease markers. Plasma circulating tumor DNA (ctDNA) has shown promise as a potential minimally invasive biomarker and monitoring tool in other cancers; however, it remains underexplored in RMS. We aimed to determine the feasibility of identifying and quantifying ctDNA in plasma as a marker of disease burden and/or treatment response using blood samples from RMS mouse models and patients. METHODS: We established mouse models of RMS and applied quantitative polymerase chain reaction (PCR) and droplet digital PCR (ddPCR) to detect ctDNA within the mouse plasma. Potential driver mutations, copy-number alterations, and DNA breakpoints associated with PAX3/7-FOXO1 gene fusions were identified in the RMS samples collected at diagnosis. Patient-matched plasma samples collected from 28 patients with RMS before, during, and after treatment were analyzed for the presence of ctDNA via ddPCR, panel sequencing, and/or whole-exome sequencing. RESULTS: Human tumor-derived DNA was detectable in plasma samples from mouse models of RMS and correlated with tumor burden. In patients, ctDNA was detected in 14/18 pretreatment plasma samples with ddPCR and 7/7 cases assessed by sequencing. Levels of ctDNA at diagnosis were significantly higher in patients with unfavorable tumor sites, positive nodal status, and metastasis. In patients with serial plasma samples (n = 18), fluctuations in ctDNA levels corresponded to treatment response. CONCLUSION: Comprehensive ctDNA analysis combining high sensitivity and throughput can identify key molecular drivers in RMS models and patients, suggesting potential as a minimally invasive biomarker. Preclinical assessment of treatments using mouse models and further patient testing through prospective clinical trials are now warranted.


Assuntos
DNA Tumoral Circulante , Neoplasias , Rabdomiossarcoma Embrionário , Humanos , Criança , Camundongos , Animais , DNA Tumoral Circulante/genética , Estudos de Viabilidade , Estudos Prospectivos , Biomarcadores Tumorais/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA