Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Carbohydr Polym ; 343: 122432, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174119

RESUMO

Sorption is one of the most efficient methods to remediate the increasing oil spill incidents, but the currently available absorbents are inadequate to tackle such a global threat. Recently, numerous researchers have attempted to develop sustainable oil sorbents. Cellulose aerogels and foams, a type of lightweight porous material with excellent sorption performance, are one of the most promising candidates. Significant progress has been made in the past decade towards the development of cellulose porous materials as effective oil sorbents, with improvements in their oil sorption capacity, reusability, and enhanced multifunctionality, indicating their potential for oil spill remediation. This article reviews recent reports and provides a comprehensive overview of the preparation and modification strategies for cellulose porous materials, with a specific emphasis on their oil sorption performance and structure control. We also focus on the burgeoning 3D printing technology within this field, summarizing the latest advances with a discussion of the potential for using 3D printing to customize and optimize the structure of cellulose porous materials. Lastly, this review addresses current limitations and outlines future directions for development.

2.
Materials (Basel) ; 16(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902959

RESUMO

Biobased composites offer unique properties in the context of sustainable material production as well as end-of-life disposal, which places them as viable alternatives to fossil-fuel-based materials. However, the large-scale application of these materials in product design is hindered by their perceptual handicaps and understanding the mechanism of biobased composite perception, and its constituents could pave the way to creating commercially successful biobased composites. This study examines the role of bimodal (visual and tactile) sensory evaluation in the formation of biobased composite perception through the Semantic Differential method. It is observed that the biobased composites could be grouped into different clusters based on the dominance and interplay of various senses in perception forming. Attributes such as Natural, Beautiful, and Valuable are seen to correlate with each other positively and are influenced by both visual and tactile characteristics of the biobased composites. Attributes such as Complex, Interesting, and Unusual are also positively correlated but dominated by visual stimuli. The perceptual relationships and components of beauty, naturality, and value and their constituent attributes are identified, along with the visual and tactile characteristics that influence these assessments. Material design leveraging these biobased composite characteristics could lead to the creation of sustainable materials that would be more attractive to designers and consumers.

3.
Carbohydr Polym ; 90(1): 730-3, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24751100

RESUMO

Continuous fibre-reinforced all-cellulose composite (ACC) laminates were produced in the form of a dimensionally thick (>1 mm) laminate using an easy-to-use processing pathway termed solvent infusion processing (SIP) from a rayon (Cordenka™) textile using the ionic liquid 1-butyl-3-methylimidazolium acetate. SIP facilitates the infusion of a solvent through a dry cellulose fibre preform with the aim of partially dissolving the outer surface of the cellulose fibres. The dissolved cellulose is then regenerated by solvent exchange to form a matrix phase in situ that acts to bond together the undissolved portion of the fibres. SIP is capable of producing thick, dimensionally stable ACC laminates with high volume fractions of continuous fibres (>70 vol.%) due to the combination of two factors: (i) homogeneous and controlled partial dissolution of the fibres and (ii) the application of pressure during regeneration and drying that provides a high level of fibre compaction, thereby overcoming void formation associated with material shrinkage. The effect of inlet and outlet positioning, and applied pressure on the macro- and microstructure of all-cellulose composites is examined. Finally, SIP expands the applications for ACCs by enabling the production of thick ACC laminates to overcome the limitations of conventional thin-film ACCs.

4.
J Chromatogr A ; 1652: 462365, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34246960

RESUMO

An ordered 3D printed chromatography stationary phase was used to purify M13 bacteriophage (M13) directly from crude cell culture. This new approach, which offers the same advantages as expanded bed adsorption (EBA) with regard to tolerating solids-laden feed streams but without the corresponding issues associated with fluidized bed stability that affect the latter, can be described as "printed monolith adsorption (PMA)". PMA columns (5, 10 and 15 cm length by 1 cm diameter) were made via a wax templating method from cross-linked cellulose hydrogel and functionalized with a quaternary amine ligand. The recovery of M13 was found to be strongly linked to load flow rate, with the highest recovery 89.7% ± 6% for 1.4 × 1011 pfu/mL of resin occurring at 76 cm/h with a 10 cm column length. A recovery of 87.7% ± 5% for 1.49 × 1011 pfu/mL of media was achieved with a 15 cm column length under conditions comparable to a reported EBA process. The PMA process was completed three times faster than EBA because PMA flow rates can readily be adjusted during operation, with high flow rates and low back pressure, which is unique to the ordered monolithic media geometry used. Equilibration, wash, and cleaning steps were carried out at high flow rates (611 cm/h), minimizing process time and were limited only by the volumetric flow rate capacity of the pumps used, rather than column back pressure (<0.1 MPa at 611 cm/hr). Initial capture of M13 appears to occur on the surface of the monolith solid phase (i.e. the mobile phase channel walls) and subsequently, at a slower rate, within the internal pores of the solid phase media. The difference in binding rate between these two sites is likely caused by slow pore diffusion of the large M13 particles into the pores, with similar slow diffusion out of the pores resulting in tailing of the elution peak. The results indicate that PMA is a promising technology for the efficient purification of viruses directly from crude cell culture.


Assuntos
Bacteriófago M13 , Virologia , Adsorção , Bacteriófago M13/isolamento & purificação , Meios de Cultura , Virologia/instrumentação , Virologia/métodos
5.
Materials (Basel) ; 14(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34832391

RESUMO

Screen-additive manufacturing (SAM) is a potential method for producing small intricate parts without waste generation, offering minimal production cost. A wide range of materials, including gels, can be shaped using this method. A gel material is composed of a three-dimensional cross-linked polymer or colloidal network immersed in a fluid, known as hydrogel when its main constituent fluid is water. Hydrogels are capable of absorbing and retaining large amounts of water. Cellulose gel is among the materials that can form hydrogels and, as shown in this work, has the required properties to be directly SAM, including shear thinning and formation of post-shearing gel structure. In this study, we present the developed method of SAM for the fabrication of complex-shaped cellulose gel and examine whether successive printing layers can be completed without delamination. In addition, we evaluated cellulose SAM without the need for support material. Design of Experiments (DoE) was applied to optimize the SAM settings for printing the novel cellulose-based gel structure. The optimum print settings were then used to print a periodic structure with micro features and without the need for support material.

6.
Bioengineering (Basel) ; 7(2)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560063

RESUMO

To facilitate functional hydrogel part production using the indirect wax mould method, it is necessary to understand the relationships between materials, process and mould removal. This research investigated the thermophysical properties, wettability and surface roughness of wax template moulds in the production of cellulose hydrogel objects. Cellulose gel was thermally formed and shaped in three different wax moulds-high melting point paraffin, sacrificial investment casting wax and Solidscape® wax-by physical cross-linking of polymer networks of cellulose solution in NaOH/urea aqueous solvent. All three wax moulds were capable of casting cellulose hydrogel objects. Cellulose gelling time was reduced by increasing the temperature. Thus, the mould melting temperature had a direct effect on the gelling time. It was found that mould removal time varied based on the contact angle (CA) of the cellulose solution and the mould, and based on the melting point of the mould. A higher CA of cellulose solution on the wax moulds resulted in faster mould removal. When melting the wax in 90 °C water, high melting point paraffin, sacrificial investment casting and Solidscape® wax took about 3, 2 and 1½ h, respectively, to remove the moulds from the cellulose gel.

7.
Bioengineering (Basel) ; 7(2)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230746

RESUMO

In recent years, 3D printing has enabled the fabrication of complex designs, with low-cost customization and an ever-increasing range of materials. Yet, these abilities have also created an enormous challenge in optimizing a large number of process parameters, especially in the 3D printing of swellable, non-toxic, biocompatible and biodegradable materials, so-called bio-ink materials. In this work, a cellulose gel, made out of aqueous solutions of cellulose, sodium hydroxide and urea, was used to demonstrate the formation of a shear thinning bio-ink material necessary for an extrusion-based 3D printing. After analysing the shear thinning behaviour of the cellulose gel by rheometry a Design of Experiments (DoE) was applied to optimize the 3D bioprinter settings for printing the cellulose gel. The optimum print settings were then used to print a human ear shape, without a need for support material. The results clearly indicate that the found settings allow the printing of more complex parts with high-fidelity. This confirms the capability of the applied method to 3D print a newly developed bio-ink material.

8.
Materials (Basel) ; 12(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939751

RESUMO

Cellulose-based hydrogels were prepared by dissolving cellulose in aqueous sodium hydroxide (NaOH)/urea solutions and casting it into complex shapes by the use of sacrificial templates followed by thermal gelation of the solution. Both the gelling temperatures used (40⁻80 °C), as well as the method of heating by either induction in the form of a water bath and hot press or radiation by microwaves could be shown to have a significant effect on the compressive strength and modulus of the prepared hydrogels. Lower gelling temperatures and shorter heating times were found to result in stronger and stiffer gels. Both the effect of physical cross-linking via the introduction of additional non-dissolving cellulosic material, as well as chemical cross-linking by the introduction of epichlorohydrin (ECH), and a combination of both applied during the gelation process could be shown to affect both the mechanical properties and microstructure of the hydrogels. The added cellulose acts as a physical-cross-linking agent strengthening the hydrogen-bond network as well as a reinforcing phase improving the mechanical properties. However, chemical cross-linking of an unreinforced gel leads to unfavourable bonding and cellulose network formation, resulting in drastically increased pore sizes and reduced mechanical properties. In both cases, chemical cross-linking leads to larger internal pores.

9.
Struct Dyn ; 5(6): 064501, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30868081

RESUMO

Material properties can be controlled via strain, pressure, chemical composition, or dimensionality. Nickelates are particularly susceptible due to their strong variations of the electronic and magnetic properties on such external stimuli. Here, we analyze the photoinduced dynamics in a single crystalline NdNiO3 film upon excitation across the electronic gap. Using time-resolved reflectivity and resonant x-ray diffraction, we show that the pump pulse induces an insulator-to-metal transition, accompanied by the melting of the charge order. Finally, we compare our results with similar studies in manganites and show that the same model can be used to describe the dynamics in nickelates, hinting towards a unified description of these photoinduced electronic ordering phase transitions.

12.
J Fam Pract ; 57(9): 609-10, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18786335

RESUMO

No there is no well-tested, easily administered screening tool to detect drug-seeking behaviors in primary care patients taking long-term opioids or being considered for such therapy (strength of recommendation [SOR]: studies of intermediate outcomes). Several tools have undergone preliminary testing in pain centers and are being tested in different settings with larger numbers of patients. For primary care providers, a useful screening tool for predicting drug-seeking behaviors is the Screener and Opioid Assessment for Patients with Pain (SOAPP-R; SOR: studies of intermediate outcomes). Drug-seeking behavior in patients on long-term opioid therapy can be monitored with the Current Opioid Misuse Measure (COMM; SOR: studies of intermediate outcomes).


Assuntos
Analgésicos Opioides/uso terapêutico , Comportamento , Dor/tratamento farmacológico , Dor/psicologia , Detecção do Abuso de Substâncias , Doença Crônica , Humanos , Sensibilidade e Especificidade , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA