RESUMO
BACKGROUND: The diagnosis of T-cell lymphomas is typically established through a multiparameter approach that combines clinical, morphologic, immunophenotypic, and genetic features, utilizing a variety of histopathologic and molecular techniques. However, accurate diagnosis of such lymphomas and distinguishing them from reactive lymph nodes remains challenging due to their low prevalence and heterogeneous features, hence limiting the confidence of pathologists. We investigated the use of microRNA (miRNA) expression signatures as an adjunctive tool in the diagnosis and classification of T-cell lymphomas that involve lymph nodes. This study seeks to distinguish reactive lymph nodes (RLN) from two types of frequently occurring nodal T-cell lymphomas: nodal T-follicular helper (TFH) cell lymphomas (nTFHL) and peripheral T-cell lymphomas, not otherwise specified (nPTCL). METHODS: From the formalin-fixed paraffin-embedded (FFPE) samples from a cohort of 88 subjects, 246 miRNAs were quantified and analyzed by differential expression. Two-class logistic regression and random forest plot models were built to distinguish RLN from the nodal T-cell lymphomas. Gene set enrichment analysis was performed on the target genes of the miRNA to identify pathways and transcription factors that may be regulated by the differentially expressed miRNAs in each subtype. RESULTS: Using logistic regression analysis, we identified miRNA signatures that can distinguish RLN from nodal T-cell lymphomas (AUC of 0.92 ± 0.05), from nTFHL (AUC of 0.94 ± 0.05) and from nPTCL (AUC of 0.94 ± 0.08). Random forest plot modelling was also capable of distinguishing between RLN and nodal T-cell lymphomas, but performed worse than logistic regression. However, the miRNA signatures are not able to discriminate between nTFHL and nPTCL, owing to large similarity in miRNA expression patterns. Bioinformatic analysis of the gene targets of unique miRNA expression revealed the enrichment of both known and potentially understudied signalling pathways and genes in such lymphomas. CONCLUSION: This study suggests that miRNA biomarkers may serve as a promising, cost-effective tool to aid the diagnosis of nodal T-cell lymphomas, which can be challenging. Bioinformatic analysis of differentially expressed miRNAs revealed both relevant or understudied signalling pathways that may contribute to the progression and development of each T-cell lymphoma entity. This may help us gain further insight into the biology of T-cell lymphomagenesis.
RESUMO
BACKGROUND: Social behaviors such as altruism, where one self-sacrifices for collective benefits, critically influence an organism's survival and responses to the environment. Such behaviors are widely exemplified in nature but have been underexplored in cancer cells which are conventionally seen as selfish competitive players. This multidisciplinary study explores altruism and its mechanism in breast cancer cells and its contribution to chemoresistance. METHODS: MicroRNA profiling was performed on circulating tumor cells collected from the blood of treated breast cancer patients. Cancer cell lines ectopically expressing candidate miRNA were used in co-culture experiments and treated with docetaxel. Ecological parameters like relative survival and relative fitness were assessed using flow cytometry. Functional studies and characterization performed in vitro and in vivo include proliferation, iTRAQ-mass spectrometry, RNA sequencing, inhibition by small molecules and antibodies, siRNA knockdown, CRISPR/dCas9 inhibition and fluorescence imaging of promoter reporter-expressing cells. Mathematical modeling based on evolutionary game theory was performed to simulate spatial organization of cancer cells. RESULTS: Opposing cancer processes underlie altruism: an oncogenic process involving secretion of IGFBP2 and CCL28 by the altruists to induce survival benefits in neighboring cells under taxane exposure, and a self-sacrificial tumor suppressive process impeding proliferation of altruists via cell cycle arrest. Both processes are regulated concurrently in the altruists by miR-125b, via differential NF-κB signaling specifically through IKKß. Altruistic cells persist in the tumor despite their self-sacrifice, as they can regenerate epigenetically from non-altruists via a KLF2/PCAF-mediated mechanism. The altruists maintain a sparse spatial organization by inhibiting surrounding cells from adopting the altruistic fate via a lateral inhibition mechanism involving a GAB1-PI3K-AKT-miR-125b signaling circuit. CONCLUSIONS: Our data reveal molecular mechanisms underlying manifestation, persistence and spatial spread of cancer cell altruism. A minor population behave altruistically at a cost to itself producing a collective benefit for the tumor, suggesting tumors to be dynamic social systems governed by the same rules of cooperation in social organisms. Understanding cancer cell altruism may lead to more holistic models of tumor evolution and drug response, as well as therapeutic paradigms that account for social interactions. Cancer cells constitute tractable experimental models for fields beyond oncology, like evolutionary ecology and game theory.
Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Altruísmo , Fosfatidilinositol 3-Quinases , MicroRNAs/genética , Neoplasias da Mama/genéticaRESUMO
Epstein-Barr virus (EBV)-associated smooth muscle tumors (EBV-SMTs) are rare smooth muscle neoplasms exclusively associated with immunosuppression, such as in patients with HIV/AIDS, posttransplant, and congenital immunodeficiency. However, the genomic landscape of EBV-SMTs is poorly understood. Leiomyosarcomas harbor genomic instability and multiple recurrent DNA copy number alterations, whereas leiomyomas lack such changes. Thus, this study aimed to fill this knowledge gap by characterizing copy number alterations in EBV-SMTs and correlating this information with clinicopathologic characteristics. Our study investigated and compared the pathologic characteristics and copy number profiles of 9 EBV-SMTs (from 7 post-transplant and AIDS patients), 6 leiomyomas, and 7 leiomyosarcomas, using chromosomal microarray platforms. Our results showed a lower copy number alteration burden in EBV-SMTs and leiomyoma than in leiomyosarcoma. This contrast in the molecular profile between EBV-SMTs and leiomyosarcoma is concordant with the different clinical behaviors and pathologic characteristics exhibited by these tumors. Despite having an overall copy number alteration profile closer to leiomyoma, recurrent copy number gain of oncogenes, such as RUNX1, CCND2, and ETS2, was found in EBV-SMTs. Epigenetic alterations may play an important role in tumorigenesis as recurrent copy number gains were found in histone deacetylases. A gene enrichment analysis also demonstrated enrichment of genes involved in the host response to viral infection, suggesting that the tumor immune microenvironment may play an important role in EBV-SMT tumorigenesis.
Assuntos
Infecções por Vírus Epstein-Barr , Leiomioma , Leiomiossarcoma , Tumor de Músculo Liso , Humanos , Herpesvirus Humano 4/genética , Leiomiossarcoma/genética , Tumor de Músculo Liso/genética , Tumor de Músculo Liso/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Leiomioma/genética , Carcinogênese , Microambiente TumoralRESUMO
Adipocytic tumors are the most common subtype of soft tissue tumors. In current clinical practice, distinguishing benign lipomas from well-differentiated liposarcomas (WDLPS), as well as dedifferentiated liposarcomas (DDLPS) from their morphologic mimics, remains a significant diagnostic challenge. This is especially so when examining small biopsy samples and without the aid of additional ancillary tests. Recognizing the important role that microRNAs (miRNAs) play in tumorigenesis and their potential utility in tumor classification, we analyzed routine clinical tissue samples of benign and malignant lipomatous tumors, as well as other sarcoma mimics, to identify distinguishing miRNA-based signatures that can aid in the differential diagnosis of these entities. We discovered a 6-miRNA signature that separated lipomas from WDLPS with high confidence (AUC of 0.963), as well as a separate 6-miRNA signature that distinguished DDLPS from their more aggressive histologic mimics (AUC of 0.740). Functional enrichment analysis unveiled possible mechanistic involvement of these predictive miRNAs in adipocytic cancer-related biological processes and pathways such as PI3K/AKT/mTOR and MAPK signaling, further supporting the relevance of these miRNAs as biomarkers for adipocytic tumors. Our results demonstrate that miRNA expression profiling may potentially be used as an adjunctive tool for the diagnosis of benign and malignant adipocytic tumors. Further validation studies are warranted.
Assuntos
Lipoma , Lipossarcoma , MicroRNAs , Neoplasias de Tecidos Moles , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Diagnóstico Diferencial , Humanos , Lipoma/diagnóstico , Lipoma/genética , Lipossarcoma/diagnóstico , Lipossarcoma/genética , Lipossarcoma/patologia , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , Neoplasias de Tecidos Moles/patologiaRESUMO
A 3-year-old boy presented with pathologic fracture of the left proximal femur. Magnetic resonance imaging revealed an aggressive expansile bony mass associated with cortical destruction and surrounding myositis. Computed tomography-guided biopsy revealed a monomorphic small round blue cell tumor by histology. CD99 immunoreactivity and low-level EWSR1 gene translocation by break-apart fluorescent in situ hybridization initially favored a diagnosis of Ewing sarcoma and chemotherapy commenced. Subsequent molecular evaluation by an anchored multiplex polymerase chain reaction-based assay (Archer FusionPlex Sarcoma Panel) revealed a nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) gene fusion. The diagnosis was then amended to primary bone ALK-positive anaplastic large cell lymphoma and the chemotherapy regimen was modified accordingly. This report illustrates the value of this molecular assay in establishing the correct diagnosis of a very rare malignancy masquerading as another tumor type.
Assuntos
Neoplasias Ósseas/diagnóstico , Linfoma Anaplásico de Células Grandes/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Pré-Escolar , Diagnóstico Diferencial , Humanos , Masculino , Sarcoma de Ewing/diagnósticoRESUMO
PURPOSE: The role of Forkhead Box Protein 3 (Foxp3) expressing regulatory T cells (Tregs) in breast cancer remains unclear. We examined the abundance and localisation of total T cells, B cells and Tregs within samples from triple-negative breast cancers (TNBCs) and asked whether these parameters were associated with clinicopathological features of the cancer or clinical outcomes. METHODS: Samples from TNBCs diagnosed between 2003 and 2010 in Singapore were divided into "high" and "low" intra-tumoural or stromal groups, based on whether they had higher or lower than median densities of specific tumour-infiltrating lymphocyte populations (CD3+ total T cells, Foxp3+CD3+ Tregs, or CD20+ B cells) in the intra-tumoural space or stroma. RESULTS: Of the 164 samples, patients bearing tumours with high Tregs within their intra-tumoural, but not stromal, areas experienced significantly longer overall and disease-free survival compared to individuals with low Treg densities. These "high intra-tumoural Treg" tumours were also characterised by relatively higher frequencies of CD8+ T cells and CD20+ B cells, and expressed significantly higher levels of some genes associated with inflammation, immune cell functions and trafficking, altogether consistent with a more "immune-activated" tumour microenvironment, in contrast to tumours bearing lower densities of Tregs. CONCLUSIONS: In summary, the combination of high densities of intra-tumoural Tregs, CD8+ T cells and CD20+ B cells represents a favourable prognostic panel in TNBCs. These data also indicate new avenues for further investigation on the interaction between immune cell types within the tumour microenvironment and highlight the potential of Treg density and localisation within tumours to affect clinical outcome.
Assuntos
Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Linfócitos B/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
BACKGROUND: Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for pathologists, while image quality inconsistency, continuous data integration needs, and limited generalizability hinder their adoption and scalability. METHODS: We present a comprehensive digital pathology workflow for AI-assisted Gleason grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based annotation), Pathologist-AI Interaction (PAI) for continuous model improvement, Trained on Akoya-scanned images only, the model utilizes color augmentation and image appearance migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from another five scanners and conduct validations with pathologists to assess AI efficacy and PAI. RESULTS: Our model achieves an average F1 score of 0.80 on annotations and 0.71 Quadratic Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images from other scanners. The model accelerates Gleason scoring time by 43% while maintaining accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further improvements in model performance. CONCLUSIONS: This pipeline represents a notable advancement in AI-assisted Gleason grading for improved consistency, accuracy, and efficiency. Unlike previous methods limited by scanner specificity, our model achieves outstanding performance across diverse scanners. This improvement paves the way for its seamless integration into clinical workflows.
Gleason grading is a well-accepted diagnostic standard to assess the severity of prostate cancer in patients' tissue samples, based on how abnormal the cells in their prostate tumor look under a microscope. This process can be complex and time-consuming. We explore how artificial intelligence (AI) can help pathologists perform Gleason grading more efficiently and consistently. We build an AI-based system which automatically checks image quality, standardizes the appearance of images from different equipment, learns from pathologists' feedback, and constantly improves model performance. Testing shows that our approach achieves consistent results across different equipment and improves efficiency of the grading process. With further testing and implementation in the clinic, our approach could potentially improve prostate cancer diagnosis and management.
RESUMO
Macrophages are abundant immune cells in the microenvironment of diffuse large B-cell lymphoma (DLBCL). Macrophage estimation by immunohistochemistry shows varying prognostic significance across studies in DLBCL, and does not provide a comprehensive analysis of macrophage subtypes. Here, using digital spatial profiling with whole transcriptome analysis of CD68+ cells, we characterize macrophages in distinct spatial niches of reactive lymphoid tissues (RLTs) and DLBCL. We reveal transcriptomic differences between macrophages within RLTs (light zone /dark zone, germinal center/ interfollicular), and between disease states (RLTs/ DLBCL), which we then use to generate six spatially-derived macrophage signatures (MacroSigs). We proceed to interrogate these MacroSigs in macrophage and DLBCL single-cell RNA-sequencing datasets, and in gene-expression data from multiple DLBCL cohorts. We show that specific MacroSigs are associated with cell-of-origin subtypes and overall survival in DLBCL. This study provides a spatially-resolved whole-transcriptome atlas of macrophages in reactive and malignant lymphoid tissues, showing biological and clinical significance.
Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Prognóstico , Linfoma Difuso de Grandes Células B/patologia , Perfilação da Expressão Gênica , Transcriptoma , Centro Germinativo/patologia , Microambiente Tumoral/genéticaRESUMO
Accurate diagnosis of the most common histological subtypes of small B-cell lymphomas is challenging due to overlapping morphological features and limitations of ancillary testing, which involves a large number of immunostains and molecular investigations. In addition, a common diagnostic challenge is to distinguish reactive lymphoid hyperplasia that do not require additional stains from such lymphomas that need ancillary investigations. We investigated if tissue-specific microRNA (miRNA) expression may provide potential biomarkers to improve the pathology diagnostic workflow. This study seeks to distinguish reactive lymphoid proliferation (RL) from small B-cell lymphomas, and to further distinguish the four main subtypes of small B-cell lymphomas. Two datasets were included: a discovery cohort (n = 100) to screen for differentially expressed miRNAs and a validation cohort (n = 282) to develop classification models. The models were evaluated for accuracy in subtype prediction. MiRNA gene set enrichment was also performed to identify differentially regulated pathways. 306 miRNAs were detected and quantified, resulting in 90-miRNA classification models from which smaller panels of miRNAs biomarkers with good accuracy were derived. Bioinformatic analysis revealed the upregulation of known and other potentially relevant signaling pathways in such lymphomas. In conclusion, this study suggests that miRNA expression profiling may serve as a promising tool to aid the diagnosis of common lymphoid lesions.
RESUMO
MicroRNAs (MiRNAs) are small, non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation of gene expression. We analyzed the differential expression of miRNAs in 119 endometrial carcinomas, measuring their expression in histological subtypes, molecular subtypes, and tumors with CTNNB1 mutations. Tumors were subdivided into histological and molecular subtypes as defined by The Cancer Genome Atlas. The expression levels of 352 miRNAs were quantified using the PanoramiR panel. Mir-449a, mir-449b-5p, and mir-449c-5p were the top three miRNAs showing increased expression in both endometrioid and de-differentiated carcinomas but were not significantly increased in serous and clear cell carcinomas. The miRNAs with the most increased expression in serous and clear cell carcinomas were miR-9-3p and miR-375, respectively. We also identified 62 differentially expressed miRNAs among different molecular subtypes. Using sequential forward selection, we built subtype classification models for some molecular subtypes of endometrial carcinoma, comprising 5 miRNAs for MMR-deficient tumors, 10 miRNAs for p53-mutated tumors, and 3 miRNAs for CTNNB1-mutated tumors, with areas under curves of 0.75, 0.85, and 0.78, respectively. Our findings confirm the differential expression of miRNAs between various endometrial carcinoma subtypes and may have implications for the development of diagnostic and prognostic tools.
RESUMO
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE: Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Assuntos
Linfoma Difuso de Grandes Células B , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Oncogenes , Linfoma Difuso de Grandes Células B/patologiaRESUMO
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαß+ and CD8αß+ TCRαß+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαß+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
RESUMO
Extraskeletal osteosarcoma of the small bowel mesentery is an exceedingly rare condition. It is an aggressive malignant neoplasm of mesenchymal origin characterized by osteoid formation. Final diagnosis is often made by histopathological analysis. However, we believe that prospective radiological diagnosis may be possible through careful analysis of densities (ossification) within the mesenteric mass. To the best of our knowledge, there is no current literature describing the radiological approach to making a prospective diagnosis of this condition. We present the 12th case of extraskeletal osteosarcoma worldwide and describe a radiological approach that is potentially useful in making a prospective diagnosis.
Assuntos
Neoplasias Ósseas , Osteossarcoma , Neoplasias de Tecidos Moles , Doença Aguda , Neoplasias Ósseas/patologia , Humanos , Mesentério/diagnóstico por imagem , Mesentério/patologia , Osteossarcoma/complicações , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/cirurgia , Estudos Prospectivos , Neoplasias de Tecidos Moles/patologiaRESUMO
With the rapid development of various coronavirus disease 2019 (COVID-19) vaccines in a bid to counter and contain the COVID-19 pandemic, unusual and uncommon side effects of COVID-19 vaccination have been increasingly reported in the literature. Ipsilateral lymphadenopathy is a fairly common side effect of vaccination of any kind, with its etiology most commonly related to reactive lymphadenopathy. However, Kikuchi-Fujimoto Disease (KFD) or necrotizing histiocytic lymphadenitis is rarely observed post-vaccination, with only one other case of KFD post COVID-19 vaccination reported to date. We report two more cases of KFD post COVID-19 vaccination in the Asian population, highlighting the clinical course and salient clinical, radiological and histologic findings. In addition, we provide a literature review of the existing cases of lymphadenopathy post COVID-19 vaccination with cytologic and/or histologic correlation.
RESUMO
Overexpression of WLS, an upstream protein in the Wnt pathway, has been implicated in several non-osteogenic tumours. This study represents the first attempt at evaluating WLS expression in various bone and soft tissue tumours using YJ5, a monoclonal antibody specific to WLS, with the aim of elucidating its utility in discerning tumours with aberrant Wnt signalling and as a marker of osteogenic lineage in challenging cases. Tumour tissue sections of 144 bone mass lesions and 63 soft tissue mass lesions were immunostained with the YJ5 antibody following standardised protocols. Subsequent assessment of immunoreactivity segregated cases into one of three groups: absent/weak, moderate, or strong YJ5 immunoreactivity. For the bone tumours, strong YJ5 immunoreactivity was seen in almost all osteosarcomas and chondroblastomas, all osteoblastomas and osteoid osteomas. In contrast, all other cartilaginous tumours, chordomas, aneurysmal bone cysts, chondromyxoid fibromas, most fibrous dysplasias and most giant cell tumours exhibited absent/weak YJ5 immunostaining. For the soft tissue tumours, a more heterogeneous pattern of YJ5 immunoreactivity was observed. Because diffuse and strong YJ5 expression is identified in almost all benign and malignant bone tumours with osteoblastic activity, it can be potentially utilised as an immunohistochemical marker to support osteogenic lineage. If interpreted in the appropriate context, this marker is useful in determining whether a malignant bone tumour is an osteosarcoma, particularly in those subtypes with no or minimal osteoid or unusual morphological features. This marker can also complement SATB2 to denote osteogenic lineage.
Assuntos
Anticorpos Monoclonais , Peptídeos e Proteínas de Sinalização Intracelular , Osteossarcoma , Receptores Acoplados a Proteínas G , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/patologia , Osso e Ossos/patologia , Humanos , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/análise , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Osteossarcoma/diagnóstico , Osteossarcoma/patologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Estudos Retrospectivos , Neoplasias de Tecidos Moles/patologia , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Proteínas Wnt/imunologia , Proteínas Wnt/metabolismo , Via de Sinalização WntRESUMO
Epstein-Barr virus (EBV)-positive T-cell and natural killer (NK)-cell lymphoproliferative diseases (EBV-TNKLPD) are a group of uncommon disorders characterised by EBV infection of T- and NK-cells. As a group, EBV-TNKLPD are more commonly encountered in Asians and Native Americans from Central and South America compared to Western populations. They encompass a spectrum of entities that range from non-neoplastic lesions such as EBV-associated haemophagocytic lymphohistiocytosis (EBV-HLH) to more chronic conditions with variable outcomes such as chronic active EBV infections (CAEBV) of T- and NK-cell type (cutaneous and systemic forms) and malignant diseases such as systemic EBV-positive T-cell lymphoma of childhood, aggressive NK-cell leukaemia, extranodal NK/T-cell lymphoma, nasal-type, and primary EBV-positive nodal T/NK-cell lymphoma. Due to their rarity, broad clinicopathological spectrum and significant morphological and immunophenotypic overlap, the diagnosis and precise classification of EBV-TNKLPD often pose a challenge to clinicians and pathologists. Correct classification of this group of rare diseases relies heavily on the age of onset, disease presentation, duration of symptoms and cell of origin (T- vs NK-cell lineage). In this review, we provide an update on the clinicopathological and molecular features of the various EBV-TNKLPD entities occurring in non-immunocompromised patients and present a practical algorithmic approach for the general pathologist who is confronted with these disorders in routine clinical practice.
Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/patogenicidade , Células Matadoras Naturais/patologia , Linfoma de Células T/patologia , Transtornos Linfoproliferativos/patologia , Infecções por Vírus Epstein-Barr/diagnóstico , Humanos , Células Matadoras Naturais/virologia , Leucemia Linfocítica Granular Grande/diagnóstico , Leucemia Linfocítica Granular Grande/patologia , Leucemia Linfocítica Granular Grande/virologia , Linfoma de Células T/virologia , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/virologiaRESUMO
PRDM (PRDI-BF1 and RIZ homology domain containing) family members are sequence-specific transcriptional regulators involved in cell identity and fate determination, often dysregulated in cancer. The PRDM15 gene is of particular interest, given its low expression in adult tissues and its overexpression in B-cell lymphomas. Despite its well characterized role in stem cell biology and during early development, the role of PRDM15 in cancer remains obscure. Herein, we demonstrate that while PRDM15 is largely dispensable for mouse adult somatic cell homeostasis in vivo, it plays a critical role in B-cell lymphomagenesis. Mechanistically, PRDM15 regulates a transcriptional program that sustains the activity of the PI3K/AKT/mTOR pathway and glycolysis in B-cell lymphomas. Abrogation of PRDM15 induces a metabolic crisis and selective death of lymphoma cells. Collectively, our data demonstrate that PRDM15 fuels the metabolic requirement of B-cell lymphomas and validate it as an attractive and previously unrecognized target in oncology.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Imunoprecipitação da Cromatina , Biologia Computacional , Proteínas de Ligação a DNA/genética , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Distribuição Aleatória , Fatores de Transcrição/genética , Transcriptoma/genéticaRESUMO
Extranodal NK/T cell lymphoma, nasal type (ENKTL) is an aggressive malignancy with a dismal prognosis. Although L-asparaginase-based chemotherapy has resulted in improved response rates, relapse occurs in up to 50% of patients with disseminated disease. There is hence an urgent need for effective targeted therapy, especially for patients with relapsed or refractory disease. Novel insights gleaned from high-throughput molecular and genomic profiling studies in recent years have contributed significantly to the understanding of the molecular biology of ENKTL, which exemplifies many of the hallmarks of cancer. Deregulated pro-proliferative signaling pathways, such as the Janus-associated kinase/signal transducer and activator of transcription (JAK/STAT), platelet-derived growth factor (PDGF), Aurora kinase, MYC, and NF-κB, have been identified as potential therapeutic targets. The discovery of the non-canonical function of EZH2 as a pro-proliferative transcriptional co-activator has shed further light on the pathogenesis of ENKTL. Loss of key tumor suppressor genes located on chromosome 6q21 also plays an important role. The best-studied examples include PR domain zinc finger protein 1(PRDM1), protein tyrosine phosphatase kappa (PTPRK), and FOXO3. Promoter hypermethylation has been shown to result in the downregulation of other tumor suppressor genes in ENKTL, which may be potentially targeted through hypomethylating agents. Deregulation of apoptosis through p53 mutations and upregulation of the anti-apoptotic protein, survivin, may provide a further growth advantage to this tumor. A deranged DNA damage response as a result of the aberration of ataxia telangiectasia-related (ATR) kinases can lead to significant genomic instability and may contribute to chemoresistance of ENKTL. Recently, immune evasion has emerged as a critical pathway for survival in ENKTL and may be a consequence of HLA dysregulation or STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1). Immunotherapy via inhibition of programmed cell death 1 (PD-1)/PD-L1 checkpoint signaling holds great promise as a novel therapeutic option. In this review, we present an overview of the key molecular and pathogenic pathways in ENKTL, organized using the framework of the "hallmarks of cancer" as described by Hanahan and Weinberg, with a focus on those with the greatest translational potential.
Assuntos
Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/patologia , Feminino , Humanos , Masculino , PrognósticoRESUMO
Background: Previous studies in Western populations, using immunohistochemistry (IHC) methods to subtype diffuse large B-cell lymphoma (DLBCL), suggest that germinal center B-cell lymphomas (GCBs) have improved outcomes. However, data in Asians have been limited and conflicting. This study aims to evaluate the prognostic impact of cell-of-origin (COO) subtyping by IHC and Lymph2Cx in South-East Asian (SEA) DLBCL patients, and to summarize the existing literature.Methods: A single-center retrospective analysis of 384 DLBCL patients diagnosed 2013-2018 who received Rituximab-based chemotherapy was performed. Hans and Lymph2Cx were used to assign COO and correlated with outcomes.Results: International Prognostic Index (IPI) score was associated with overall survival (OS) and progression-free survival (PFS). The 5-yr-OS for non-GCB versus GCB for COO by Hans was 70% versus 71% p=0.39, while 5-yr-OS for ABC versus GCB for COO by Lymph2Cx was 74% versus 92% p=0.19. The 5-yr-PFS for non-GCB versus GCB for COO by Hans was 65% versus 70% p=0.26, while 5-yr-PFS for ABC versus GCB for COO by Lymph2Cx was 64% versus 86% p=0.07.Conclusions: IPI is reaffirmed to be relevant in the rituximab era. COO by Hans has no prognostic significance, while subtyping by Lymph2Cx trends toward GCBs having better PFS and OS.