Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Br J Anaesth ; 130(2): e233-e242, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35183346

RESUMO

BACKGROUND: The posterior dominant rhythm (PDR) was the first oscillatory pattern noted in the EEG. Evoked by wakeful eyelid closure, these oscillations dissipate over seconds during loss of arousal. The peak frequency of the PDR maintains stability over years, suggesting utility as a state biomarker in the surveillance of acute cognitive impairments. This EEG signature has not been systematically investigated for tracking cognitive dysfunction after anaesthetic-induced loss of consciousness. METHODS: This substudy of Reconstructing Consciousness and Cognition (NCT01911195) investigated the PDR and cognitive function in 60 adult volunteers randomised to either 3 h of isoflurane general anaesthesia or resting wakefulness. Serial measurements of EEG power and cognitive task performance were assessed relative to pre-intervention baseline. Mixed-effects models allowed quantification of PDR and neurocognitive trajectories after return of responsiveness (ROR). RESULTS: Individuals in the control group showed stability in the PDR peak frequency over several hours (median difference/inter-quartile range [IQR] of 0.02/0.20 Hz, P=0.39). After isoflurane general anaesthesia, the PDR peak frequency was initially reduced at ROR (median difference/IQR of 0.88/0.65 Hz, P<0.001). PDR peak frequency recovered at a rate of 0.20 Hz h-1. After ROR, the PDR peak frequency correlated with reaction time and accuracy on multiple cognitive tasks (P<0.001). CONCLUSION: The temporal trajectory of the PDR peak frequency could be a useful perioperative marker for tracking cognitive dysfunction on the order of hours after surgery, particularly for cognitive domains of working memory, visuomotor speed, and executive function. CLINICAL TRIAL REGISTRATION: NCT01911195.


Assuntos
Anestésicos , Isoflurano , Adulto , Humanos , Isoflurano/farmacologia , Eletroencefalografia , Anestesia Geral , Anestésicos/farmacologia , Cognição , Ritmo alfa
2.
Anesth Analg ; 136(1): 140-151, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130079

RESUMO

BACKGROUND: Delirium is an acute syndrome characterized by inattention, disorganized thinking, and an altered level of consciousness. A reliable biomarker for tracking delirium does not exist, but oscillations in the electroencephalogram (EEG) could address this need. We evaluated whether the frequencies of EEG oscillations are associated with delirium onset, severity, and recovery in the postoperative period. METHODS: Twenty-six adults enrolled in the Electroencephalography Guidance of Anesthesia to Alleviate Geriatric Syndromes (ENGAGES; ClinicalTrials.gov NCT02241655) study underwent major surgery requiring general anesthesia, and provided longitudinal postoperative EEG recordings for this prespecified substudy. The presence and severity of delirium were evaluated with the confusion assessment method (CAM) or the CAM-intensive care unit. EEG data obtained during awake eyes-open and eyes-closed states yielded relative power in the delta (1-4 Hz), theta (4-8 Hz), and alpha (8-13 Hz) bands. Discriminability for delirium presence was evaluated with c-statistics. To account for correlation among repeated measures within patients, mixed-effects models were generated to assess relationships between: (1) delirium severity and EEG relative power (ordinal), and (2) EEG relative power and time (linear). Slopes of ordinal and linear mixed-effects models are reported as the change in delirium severity score/change in EEG relative power, and the change in EEG relative power/time (days), respectively. Bonferroni correction was applied to confidence intervals (CIs) to account for multiple comparisons. RESULTS: Occipital alpha relative power during eyes-closed states offered moderate discriminability (c-statistic, 0.75; 98% CI, 0.58-0.87), varying inversely with delirium severity (slope, -0.67; 98% CI, -1.36 to -0.01; P = .01) and with severity of inattention (slope, -1.44; 98% CI, -2.30 to -0.58; P = .002). Occipital theta relative power during eyes-open states correlated directly with severity of delirium (slope, 1.28; 98% CI, 0.12-2.44; P = .007), inattention (slope, 2.00; 98% CI, 0.48-3.54; P = .01), and disorganized thinking (slope, 3.15; 98% CI, 0.66-5.65; P = .01). Corresponding frontal EEG measures recapitulated these relationships to varying degrees. Severity of altered level of consciousness correlated with frontal theta relative power during eyes-open states (slope, 11.52; 98% CI, 6.33-16.71; P < .001). Frontal theta relative power during eyes-open states correlated inversely with time (slope, -0.05; 98% CI, -0.12 to -0.04; P = .002). CONCLUSIONS: Presence, severity, and core features of postoperative delirium covary with spectral features of the EEG. The cost and accessibility of EEG facilitate the translation of these findings to future mechanistic and interventional trials.


Assuntos
Delírio , Delírio do Despertar , Adulto , Humanos , Idoso , Transtornos da Consciência , Eletroencefalografia/métodos , Cognição
3.
bioRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712161

RESUMO

N,N-dimethyltryptamine (DMT) is a serotonergic psychedelic that is being investigated clinically for the treatment of psychiatric disorders. Although the neurophysiological effects of DMT in humans are well-characterized, similar studies in animal models as well as data on the neurochemical effects of DMT are generally lacking, which are critical for mechanistic understanding. In the current study, we combined behavioral analysis, high-density (32-channel) electroencephalography, and ultra-high-performance liquid chromatography-tandem mass spectrometry to simultaneously quantify changes in behavior, cortical neural dynamics, and levels of 17 neurochemicals in medial prefrontal and somatosensory cortices before, during, and after intravenous administration of three different doses of DMT (0.75 mg/kg, 3.75 mg/kg, 7.5 mg/kg) in male and female adult rats. All three doses of DMT produced head twitch response with most twitches observed after the low dose. DMT caused dose-dependent increases in serotonin and dopamine levels in both cortical sites along with a reduction in EEG spectral power in theta (4-10 Hz) and low gamma (25-55 Hz), and increase in power in delta (1-4 Hz), medium gamma (65-115), and high gamma (125-155 Hz) bands. Functional connectivity decreased in the delta band and increased across the gamma bands. In addition, we provide the first measurements of endogenous DMT in these cortical sites at levels comparable to serotonin and dopamine, which together with a previous study in occipital cortex, suggests a physiological role for endogenous DMT. This study represents one of the most comprehensive characterizations of psychedelic drug action in rats and the first to be conducted with DMT.

4.
Clin Neurophysiol ; 146: 77-86, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36549264

RESUMO

OBJECTIVE: Central-positive complexes (CPCs) are elicited during electroconvulsive therapy (ECT) as generalized high-amplitude waveforms with maximum positive voltage over the vertex. While these complexes have been qualitatively assessed in previous literature, quantitative analyses are lacking. This study aims to characterize CPCs across temporal, spatial, and spectral domains. METHODS: High-density 64-electrode electroencephalogram (EEG) recordings during 50 seizures acquired from 11 patients undergoing right unilateral ECT allowed for evaluation of spatiotemporal characteristics of CPCs via source localization and spectral analysis. RESULTS: Peak-amplitude CPC scalp topology was consistent across seizures, showing maximal positive polarity over the midline fronto-central region and maximal negative polarity over the suborbital regions. The sources of these peak potentials were localized to the bilateral medial thalamus and cingulate cortical regions. Delta, beta, and gamma oscillations were correlated with the peak amplitude of CPCs during seizures induced during ketamine, whereas delta and gamma oscillations were associated with CPC peaks during etomidate anesthesia (excluding the dose-charge titration). CONCLUSIONS: Our findings demonstrate the consistency of CPC presence across participant, stimulus charge, time, and anesthetic agent, with peaks localized to bilateral medial thalamus and cingulate cortical regions and associated with delta, beta, and gamma band oscillations (depending on the anesthetic condition). SIGNIFICANCE: The consistency and reproducibility of CPCs offers ECT as a new avenue for studying the dynamics of generalized seizure activity and thalamocortical networks.


Assuntos
Eletroconvulsoterapia , Ketamina , Humanos , Eletroconvulsoterapia/efeitos adversos , Reprodutibilidade dos Testes , Convulsões , Eletroencefalografia
5.
Clin Neurophysiol ; 142: 125-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030576

RESUMO

OBJECTIVE: Periods of low-amplitude electroencephalographic (EEG) signal (quiescence) are present during both anesthetic-induced burst suppression (BS) and postictal generalized electroencephalographic suppression (PGES). PGES following generalized seizures induced by electroconvulsive therapy (ECT) has been previously linked to antidepressant response. The commonality of quiescence during both BS and PGES motivated trials to recapitulate the antidepressant effects of ECT using high doses of anesthetics. However, there have been no direct electrographic comparisons of these quiescent periods to address whether these are distinct entities. METHODS: We compared periods of EEG quiescence recorded from two human studies: BS induced in 29 healthy adult volunteers by isoflurane general anesthesia and PGES in 11 patients undergoing right unilateral ECT for treatment-resistant depression. An automated algorithm allowed detection of EEG quiescence based on a 10-microvolt amplitude threshold. Spatial, spectral, and temporal analyses compared quiescent epochs during BS and PGES. RESULTS: The median (interquartile range) voltage for quiescent periods during PGES was greater than during BS (1.81 (0.22) microvolts vs 1.22 (0.33) microvolts, p < 0.001). Relative power was greater for quiescence during PGES than BS for the 1-4 Hz delta band (p < 0.001), at the expense of power in the theta (4-8 Hz, p < 0.001), beta (13-30 Hz, p = 0.04) and gamma (30-70 Hz, p = 0.006) frequency bands. Topographic analyses revealed that amplitude across the scalp was consistently higher for quiescent periods during PGES than BS, whose voltage was within the noise floor. CONCLUSIONS: Quiescent epochs during PGES and BS have distinct patterns of EEG signals across voltage, frequency, and spatial domains. SIGNIFICANCE: Quiescent epochs during PGES and BS, important neurophysiological markers for clinical outcomes, are shown to have distinct voltage and frequency characteristics.


Assuntos
Eletroconvulsoterapia , Isoflurano , Adulto , Algoritmos , Eletroencefalografia , Humanos , Convulsões/diagnóstico
6.
Front Syst Neurosci ; 15: 690717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305541

RESUMO

Studies aimed at investigating brain regions involved in arousal state control have been traditionally limited to subcortical structures. In the current study, we tested the hypothesis that inactivation of prefrontal cortex, but not two subregions within parietal cortex-somatosensory barrel field and medial/lateral parietal association cortex-would suppress arousal, as measured by an increase in anesthetic sensitivity. Male and female Sprague Dawley rats were surgically prepared for recording electroencephalogram and bilateral infusion into prefrontal cortex (N = 13), somatosensory barrel field (N = 10), or medial/lateral parietal association cortex (N = 9). After at least 10 days of post-surgical recovery, 156 µM tetrodotoxin or saline was microinjected into one of the cortical sites. Ninety minutes after injection, rats were anesthetized with 2.5% sevoflurane and the time to loss of righting reflex, a surrogate for loss of consciousness, was measured. Sevoflurane was stopped after 45 min and the time to return of righting reflex, a surrogate for return of consciousness, was measured. Tetrodotoxin-mediated inactivation of all three cortical sites decreased (p < 0.05) the time to loss of righting reflex. By contrast, only inactivation of prefrontal cortex, but not somatosensory barrel field or medial/lateral parietal association cortex, increased (p < 0.001) the time to return of righting reflex. Burst suppression ratio was not altered following inactivation of any of the cortical sites, suggesting that there was no global effect due to pharmacologic lesion. These findings demonstrate that prefrontal cortex plays a causal role in emergence from anesthesia and behavioral arousal.

7.
Front Hum Neurosci ; 15: 610466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815077

RESUMO

Psychedelics have been recognized as model interventions for studying altered states of consciousness. However, few empirical studies of the shamanic state of consciousness, which is anecdotally similar to the psychedelic state, exist. We investigated the neural correlates of shamanic trance using high-density electroencephalography (EEG) in 24 shamanic practitioners and 24 healthy controls during rest, shamanic drumming, and classical music listening, followed by an assessment of altered states of consciousness. EEG data were used to assess changes in absolute power, connectivity, signal diversity, and criticality, which were correlated with assessment measures. We also compared assessment scores to those of individuals in a previous study under the influence of psychedelics. Shamanic practitioners were significantly different from controls in several domains of altered states of consciousness, with scores comparable to or exceeding that of healthy volunteers under the influence of psychedelics. Practitioners also displayed increased gamma power during drumming that positively correlated with elementary visual alterations. Furthermore, shamanic practitioners had decreased low alpha and increased low beta connectivity during drumming and classical music and decreased neural signal diversity in the gamma band during drumming that inversely correlated with insightfulness. Finally, criticality in practitioners was increased during drumming in the low and high beta and gamma bands, with increases in the low beta band correlating with complex imagery and elementary visual alterations. These findings suggest that psychedelic drug-induced and non-pharmacologic alterations in consciousness have overlapping phenomenal traits but are distinct states of consciousness, as reflected by the unique brain-related changes during shamanic trance compared to previous literature investigating the psychedelic state.

8.
Clin Neurophysiol ; 132(4): 977-983, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33652270

RESUMO

OBJECTIVE: Postictal generalized electroencephalographic suppression (PGES) has been defined as electroencephalographic (EEG) activity of less than 10 microvolts following a generalized seizure. PGES is associated with an increased risk of sudden unexplained death in epilepsy, as well as treatment efficacy of electroconvulsive therapy (ECT). We investigated the impact of anesthetic on PGES expression and temporal characteristics. METHODS: We recorded postictal EEG in 50 ECT sessions in 11 patients with treatment resistant depression (ClinicalTrials.gov NCT02761330). For each participant, repeated sessions included either ketamine or etomidate general anesthesia during ECT. An automated algorithm was employed to detect PGES within 5 minutes after seizure termination. RESULTS: PGES was detected in 31/50 recordings, with intermittent epochs recurring up to five minutes after seizure termination. PGES total duration was greater following ketamine than etomidate anesthesia (p = 0.04). PGES expression declined loglinearly as a function of time (r = -0.89, p < 10-4). EEG amplitude during PGES did not vary linearly with time. CONCLUSIONS: PGES can occur intermittently for several minutes following seizure termination. Anesthetic effects should be considered when correlating PGES duration to clinical outcomes. SIGNIFICANCE: Prolonged EEG monitoring several minutes following seizure termination may be necessary to fully evaluate the presence and total duration of PGES.


Assuntos
Anestesia/métodos , Transtorno Bipolar/terapia , Encéfalo/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/terapia , Eletroconvulsoterapia , Convulsões/fisiopatologia , Adulto , Transtorno Bipolar/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Eletroencefalografia , Humanos
9.
Clin Neurophysiol ; 131(12): 2817-2825, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33137572

RESUMO

OBJECTIVE: Postictal generalized electroencephalographic suppression (PGES) is a pattern of low-voltage scalp electroencephalographic (EEG) activity following termination of generalized seizures. PGES has been associated with both sudden unexplained death in patients with epilepsy and therapeutic efficacy of electroconvulsive therapy (ECT). Automated detection of PGES epochs may aid in reliable quantification of this phenomenon. METHODS: We developed a voltage-based algorithm for detecting PGES. This algorithm applies existing criteria to simulate expert epileptologist readings. Validation relied on postictal EEG recording from patients undergoing ECT (NCT02761330), assessing concordance among the algorithm and four clinical epileptologists. RESULTS: We observed low-to-moderate concordance among epileptologist ratings of PGES. Despite this, the algorithm displayed high discriminability in comparison to individual epileptologists (C-statistic range: 0.86-0.92). The algorithm displayed high discrimination (C-statistic: 0.91) and substantial peak agreement (Cohen's Kappa: 0.65) in comparison to a consensus of clinical ratings. Interrater agreement between the algorithm and individual epileptologists was on par with that among expert epileptologists. CONCLUSIONS: An automated voltage-based algorithm can be used to detect PGES following ECT, with discriminability nearing that of experts. SIGNIFICANCE: Algorithmic detection may support clinical readings of PGES and improve precision when correlating this marker with clinical outcomes following generalized seizures.


Assuntos
Algoritmos , Eletroencefalografia/normas , Epilepsia/epidemiologia , Epilepsia/fisiopatologia , Morte Súbita Inesperada na Epilepsia/epidemiologia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Humanos , Reprodutibilidade dos Testes , Morte Súbita Inesperada na Epilepsia/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA