Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 19(19): e2206455, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36755193

RESUMO

Development of efficient and robust cathode catalysts is critical for the commercialization of Li-O2 batteries (LOBs). Herein, a well-designed CePO4 @N-P-CNSs cathode catalyst for LOBs via coupling P-N site-rich N, P co-doped graphene-like carbon nanosheets (N-P-CNSs) with nano-CePO4 via a novel "in situ derivation" coupling strategy by in situ transforming the P atoms of P-C sites in N-P-CNSs to CePO4 is reported. The CePO4 @N-P-CNSs exhibit superior bifunctional ORR/OER activity relative to commercial Pt/C-RuO2 with an overall overpotential of 0.64 V (vs RHE). Moreover, the LOB with CePO4 @N-P-CNSs as the cathode catalyst delivers a low charge overpotential of 0.67 V (vs Li/Li+ ), high discharge capacity of 29774 mAh g-1 at 100 mA g-1 and long cycling stability of 415 cycles, respectively. The remarkably enhanced LOB performance is attributable to the in situ derived CePO4 nanoparticles and the P-N sites in N-P-CNSs, which facilitate increased bifunctional ORR/OER activity, promote the rapid and effective decomposition of Li2 O2 and inhibit the formation of Li2 CO3 . This work may provide new inspiration for designing efficient, durable, and cost-effective cathode catalysts for LOBs.

2.
Exp Ther Med ; 25(5): 209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37090073

RESUMO

Bacterial drug resistance is increasingly becoming an important problem that needs to be solved urgently in modern clinical practices. Infection caused by Acinetobacter baumannii is a serious threat to the life and health of patients. The drug resistance rate of Acinetobacter baumannii strains is increasing, thus research on the drug resistance of Acinetobacter baumannii has also seen an increase. When patients are infected with drug-resistant Acinetobacter baumannii, the availability of suitable antibiotics commonly used in clinical practices is becoming increasingly limited and the prognosis of patients is worsening. Studying the molecular mechanism of the drug resistance of Acinetobacter baumannii is fundamental to solving the problem of drug-resistant Acinetobacter baumannii and potentially other 'super bacteria'. Drug resistance mechanisms primarily include enzymes, membrane proteins, efflux pumps and beneficial mutations. Research on the underlying mechanisms provides a theoretical basis for the use and development of antibiotics and the development of novel treatment methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA