Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Am Chem Soc ; 146(26): 17866-17877, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916547

RESUMO

Construction of mesoporous frameworks by noncovalent bonding still remains a great challenge. Here, we report a micelle-directed nanocluster modular self-assembly approach to synthesize a novel type of two-dimensional (2-D) hydrogen-bonded mesoporous frameworks (HMFs) for the first time based on nanoscale cluster units (1.0-3.0 nm in size). In this 2-D structure, a mesoporous cluster plate with ∼100 nm in thickness and several micrometers in size can be stably formed into uniform hexagonal arrays. Meanwhile, such a porous plate consists of several (3-4) dozens of layers of ultrathin mesoporous cluster nanosheets. The size of the mesopores can be precisely controlled from 11.6 to 18.5 nm by utilizing the amphiphilic diblock copolymer micelles with tunable block lengths. Additionally, the pore configuration of the HMFs can be changed from spherical to cylindrical by manipulating the concentration of the micelles. As a general approach, various new HMFs have been achieved successfully via a modular self-assembly of nanoclusters with switchable configurations (nanoring, Keggin-type, and cubane-like) and components (titanium-oxo, polyoxometalate, and organometallic clusters). As a demonstration, the titanium-oxo cluster-based HMFs show efficient photocatalytic activity for hydrogen evolution (3.6 mmol g-1h-1), with a conversion rate about 2 times higher than that of the unassembled titanium-oxo clusters (1.5 mmol g-1h-1). This demonstrates that HMFs exhibited enhanced photocatalytic activity compared with unassembled titanium-oxo clusters units.

2.
J Am Chem Soc ; 146(28): 19580-19589, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38977375

RESUMO

Developing ionic diode membranes featuring asymmetric structures is in high demand for salinity gradient energy harvesting. These membranes offer benefits in mitigating ion concentration polarization, thereby promoting ion permeability. However, most reported works focus on the role of heterogeneous charge-based bipolar ionic diode membranes for ion concentration polarization suppression, with comparatively less attention given to maintaining ion selectivity. Herein, unipolar ionic diode nanofluidic mesoporous silica membranes featuring stepped mesochannels were developed via a micellar sequential oriented interfacial self-assembly strategy as a salinity gradient energy harvester. Due to the asymmetric mesochannels and unipolar structure (both sides carry negative charge), the ionic diode membranes exhibit a strong rectification ratio of ∼15.91 to facilitate unidirectional ion transport while maintaining excellent cation selectivity (cation transfer number of ∼0.85). Besides, the vertically aligned mesochannels significantly reduce ion transport resistance, generating a high ionic flux. Consequently, the unipolar ionic diode nanofluidic membranes demonstrate a power output of 5.88 W/m2 between artificial sea and river water. The unipolar feature gives notable enhancements of 296% and 144% in power output compared to the symmetric membrane and bipolar ionic diode membrane, respectively. This work opens up new routes for designing ionic diode membranes for salinity gradient energy harvesting.

3.
Angew Chem Int Ed Engl ; 63(26): e202405252, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644634

RESUMO

Catalytic upcycling of polyolefins into high-value chemicals represents the direction in end-of-life plastics valorization, but poses great challenges. Here, we report the synthesis of a tandem porous catalyst via a micelle cascade assembly strategy for selectively catalytic cracking of polyethylene into olefins at a low temperature. A hierarchically porous silica layer from mesopore to macropore is constructed on the surface of microporous ZSM-5 nanosheets through cascade assembly of dynamic micelles. The outer macropore arrays can adsorb bulky polyolefins quickly by the capillary and hydrophobic effects, enhancing the diffusion and access to active sites. The middle mesopores present a nanoconfinement space, pre-cracking polyolefins into intermediates by weak acid sites, which then transport into zeolites micropores for further cracking by strong Brønsted acid sites. The hierarchically porous and acidic structures, mimicking biomimetic protease catalytic clefts, ideally match the tandem cracking steps of polyolefins, thus suppressing coke formation and facilitating product escape. As a result, light hydrocarbons (C1-C7) are produced with a yield of 443 mmol gZSM-5 -1, where 74.3 % of them are C3-C6 olefins, much superior to ZSM-5 and porous silica catalysts. This tandem porous catalyst exemplifies a superstructure design of catalytic cracking catalysts for industrial and economical upcycling of plastic wastes.

4.
J Am Chem Soc ; 145(50): 27708-27717, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38054893

RESUMO

Constructing asymmetric two-dimensional (2D) mesoporous nanomaterials with new pore structure, tunable monolayer architectures, and especially anisotropic surfaces remains a great challenge in materials science. Here, we report a dual-emulsion directed micelle assembly approach to fabricate a novel type of asymmetric monolayer mesoporous organosilica nanosheet for the first time. In this asymmetric 2D structure, numerous quasi-spherical semiopened mesopores (∼20 nm in diameter, 24 nm in opening size) were regularly arranged on a plane, endowing the porous nanosheets (several micrometers in size) with a typical surface anisotropy on two sides. Meanwhile, lots of triangular intervoids (4.0-5.0 nm in size) can also be found among each three semiopened mesopores, enabling the nanosheet to be interconnected. Vitally, such interconnected, anisotropic porous nanosheets exhibit ultrahigh accessible surface area (∼714 m2 g-1) and good lipophilicity properties owing to the abundant semiopened mesopores. Additionally, besides the nanosheet, the configuration of the asymmetric porous structure can also be transformed into a microcapsule when controlling the emulsification size via a facile ultrasonic treatment. As a demonstration, we show that the asymmetric microcapsule shows a high demulsification efficiency (>98%) and cyclic stability (>6 recycle times). Our protocol opens up a new avenue for developing next-generation asymmetric mesoporous materials for various applications.

5.
J Am Chem Soc ; 145(14): 7810-7819, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37002870

RESUMO

Chiral mesoporous silica (mSiO2) nanomaterials have gained significant attention during the past two decades. Most of them show a topologically characteristic helix; however, little attention has been paid to the molecular-scale chirality of mSiO2 frameworks. Herein, we report a chiral amide-gel-directed synthesis strategy for the fabrication of chiral mSiO2 nanospheres with molecular-scale-like chirality in the silicate skeletons. The functionalization of micelles with the chiral amide gels via electrostatic interactions realizes the growth of molecular configuration chiral silica sols. Subsequent modular self-assembly results in the formation of dendritic large mesoporous silica nanospheres with molecular chirality of the silica frameworks. As a result, the resultant chiral mSiO2 nanospheres show abundant large mesopores (∼10.1 nm), high pore volumes (∼1.8 cm3·g-1), high surface areas (∼525 m2·g-1), and evident CD activity. The successful transfer of the chirality from the chiral amide gels to composited micelles and further to asymmetric silica polymeric frameworks based on modular self-assembly leads to the presence of molecular chirality in the final products. The chiral mSiO2 frameworks display a good chiral stability after a high-temperature calcination (even up to 1000 °C). The chiral mSiO2 can impart a notable decline in ß-amyloid protein (Aß42) aggregation formation up to 79%, leading to significant mitigation of Aß42-induced cytotoxicity on the human neuroblastoma line SH-ST5Y cells in vitro. This finding opens a new avenue to construct the molecular chirality configuration in nanomaterials for optical and biomedical applications.


Assuntos
Doença de Alzheimer , Nanosferas , Humanos , Nanosferas/química , Peptídeos beta-Amiloides , Dióxido de Silício/química , Micelas , Géis , Amidas
6.
Small ; 19(28): e2301203, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010007

RESUMO

Hard carbons (HCs) with high sloping capacity are considered as the leading candidate anode for sodium-ion batteries (SIBs); nevertheless, achieving basically complete slope-dominated behavior with high rate capability is still a big challenge. Herein, the synthesis of mesoporous carbon nanospheres with highly disordered graphitic domains and MoC nanodots modification via a surface stretching strategy is reported. The MoOx surface coordination layer inhibits the graphitization process at high temperature, thus creating short and wide graphite domains. Meanwhile, the in situ formed MoC nanodots can greatly promote the conductivity of highly disordered carbon. Consequently, MoC@MCNs exhibit an outstanding rate capacity (125 mAh g-1 at 50 A g-1 ). The "adsorption-filling" mechanism combined with excellent kinetics is also studied based on the short-range graphitic domains to reveal the enhanced slope-dominated capacity. The insight in this work encourages the design of HC anodes with dominated slope capacity toward high-performance SIBs.

7.
J Am Chem Soc ; 144(13): 6091-6099, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316600

RESUMO

Synthesis of hierarchically porous structures with uniform spatial gradient and structure reinforcement effect still remains a great challenge. Herein, we report the synthesis of zeolite@mesoporous silica core-shell nanospheres (ZeoA@MesoS) with a gradient porous structure through a micellar dynamic assembly strategy. In this case, we find that the size of composite micelles can be dynamically changed with the increase of swelling agents, which in situ act as the building blocks for the modular assembly of gradient mesostructures. The ZeoA@MesoS nanospheres are highly dispersed in solvents with uniform micropores in the inner core and a gradient tubular mesopore shell. As a nanoreactor, such hierarchically gradient porous structures enable the capillary-directed fast mass transfer from the solutions to inner active sites. As a result, the ZeoA@MesoS catalysts deliver a fabulous catalytic yield of ∼75% on the esterification of long-chain carboxylic palmitic acids and high stability even toward water interference, which can be well trapped by the ZeoA core, pushing forward the chemical equilibrium. Moreover, a very remarkable catalytic conversion on the C-H arylation reaction of large N-methylindole is achieved (∼98%) by a Pd-immobilized ZeoA@MesoS catalyst. The water tolerance feature gives a notable enhancement of 26% in catalytic yield compared to the Pd-dendritic mesoporous silica without the zeolite core.


Assuntos
Nanosferas , Catálise , Micelas , Nanosferas/química , Porosidade , Dióxido de Silício/química
8.
J Am Chem Soc ; 144(45): 20964-20974, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36283036

RESUMO

Precise synthesis of well-ordered ultrathin nanowire arrays with tunable active surface, though attractive in optoelectronics, remains challenging to date. Herein, well-aligned sub-10 nm TiO2 nanowire arrays with controllable corrugated structure have been synthesized by a unique monomicelle-directed assembly method. The nanowires with an exceptionally small diameter of ∼8 nm abreast grow with an identical adjacent distance of ∼10 nm, forming vertically aligned arrays (∼800 nm thickness) with a large surface area of ∼102 m2 g-1. The corrugated structure consists of bowl-like concave structures (∼5 nm diameter) that are closely arranged along the axis of the ultrathin nanowires. And the diameter of the concave structures can be finely manipulated from ∼2 to 5 nm by simply varying the reaction time. The arrays exhibit excellent charge dynamic properties, leading to a high applied bias photon-to-current efficiency up to 1.4% even at a very low potential of 0.41 VRHE and a superior photocurrent of 1.96 mA cm-2 at 1.23 VRHE. Notably, an underlying mechanism of the hole extraction effect for concave walls is first clarified, demonstrating the exact role of concave walls as the hole collection centers for efficient water splitting.

9.
Angew Chem Int Ed Engl ; 61(43): e202211307, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36037030

RESUMO

A sulfhydryl monomicelles interfacial assembly strategy is presented for the synthesis of fully exposed single-atom-layer Pt clusters on 2D mesoporous TiO2 (SAL-Pt@mTiO2 ) nanosheets. This synthesis features the introduction of the sulfhydryl group in monomicelles to finely realize the controllable co-assembly process of Pt precursors within ordered mesostructures. The resultant SAL-Pt@mTiO2 shows uniform SAL Pt clusters (≈1.2 nm) anchored in ultrathin 2D nanosheets (≈7 nm) with a high surface area (139 m2 g-1 ), a large pore size (≈25 nm) and a high dispersion (≈99 %). Moreover, this strategy is universal for the synthesis of other SAL metal clusters (Pd and Au) on 2D mTiO2 with high exposure and accessibility. When used as a catalyst for hydrogenation of 4-nitrostyrene, the SAL-Pt@mTiO2 shows a high catalytic activity (TOF up to 2424 h-1 ), 100 % selectivity for 4-aminostyrene, good stability, and anti-resistance to thiourea poisoning under relatively mild conditions (25 °C, 10 bar).

10.
Small ; 17(32): e2101363, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216424

RESUMO

Highly efficient removal of organic pollutants currently is a main worldwide concern in water treatment, and highly challenging. Here, vertically oriented mesoporous coatings (MCs) with tunable surface properties and pore sizes have been developed via the single-micelle directing assembly strategy, which show good adsorption performances toward a wide range of organic pollutants. The micelle size and structure can be precisely regulated by oil molecules based on their n-octanol/water partition coefficients (Log P) in the oil-water diphase assembly system, which are critical to the pore size and pore surface property of the MCs. The affinity and steric effects of the MCs can be on-demand adjusted, as a result, the MCs show a ultrahigh adsorption capacity (263 mg g-1 ), surface occupancy ratio (≈41.92%), and adsorption rate (≈10.85 mg g-1  min-1 ) for microcystin-LR, which is among the best performances up to date. The MCs also show an excellent universality to remove organic pollutants with different properties. Moreover, overcoming the challenges proposed by particulate absorbents, the MCs are stable and can be easily regenerated and reused without secondary contamination. This work paves a new route to the synthesis of high-quality MCs for water purification.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética , Propriedades de Superfície , Poluentes Químicos da Água/análise
11.
J Am Chem Soc ; 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33141579

RESUMO

Bending and folding are important stereoscopic geometry parameters of one-dimensional (1D) nanomaterials, yet the precise control of them has remained a great challenge. Herein, a surface-confined winding assembly strategy is demonstrated to regulate the stereoscopic architecture of uniform 1D mesoporous SiO2 (mSiO2) nanorods. Based on this brand-new strategy, the 1D mSiO2 nanorods can wind on the surface of 3D premade nanoparticles (sphere, cube, hexagon disk, spindle, rod, etc.) and inherit their surface topological structures. Therefore, the mSiO2 nanorods with a diameter of ∼50 nm and a variable length can be bent into arc shapes with variable radii and radians, as well as folded into 60, 90, 120, and 180° angular convex corners with controllable folding times. Additionally, in contrast to conventional core@shell structures, this winding structure induces partial exposure and accessibility of the premade nanoparticles. The functional nanoparticles can exhibit large accessible surface and efficient energy exchanges with the surroundings. As a proof of concept, winding-structured CuS&mSiO2 nanocomposites are fabricated, which are made up of a 100 nm CuS nanosphere and the 1D mSiO2 nanorods with a diameter of ∼50 nm winding the nanosphere in the perimeter. The winding structured nanocomposites are demonstrated to have fourfold photoacoustic imaging intensity compared with the conventional core@shell nanostructure with an inaccessible core because of the greatly enhanced photothermal conversion efficiency (increased by ∼30%). Overall, our work paves the way to the design and synthesis of 1D nanomaterials with controllable bending and folding, as well as the formation of high-performance complex nanocomposites.

12.
Acc Chem Res ; 52(10): 2928-2938, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31536332

RESUMO

Mesoporous materials with various structures have attracted considerable attention due to their distinctive properties such as large pore sizes, high surface areas, tunable pore structures, and controllable framework compositions. Among them, spherical mesoporous materials (SMMs) are of great interest owing to the unique spherical shape, which show the closed packing nature and lowest surface energy. The open mesopores and short channels of SMMs not only increase the density of high accessible active sites but also facilitate the mass diffusion with short length. These characteristics are particularly useful for applications in catalysis, adsorption, energy storage and conversion, biomedicine, and so on. In addition, the creation of a spherical shape is conformable to the law of natural selection because objects in nature tend to minimize energy, while the sphere is one of the most perfect matter structures. Therefore, the design and synthesis of SMMs are very important from both fundamental and technological viewpoints. Compared to the simple single-level, SMMs with more complex multilevel structures inevitably bring unusual mechanical, electrical, and optical properties, which are highly desired for practical applications. For example, the construction of core-shell structured SMMs has inspired great attention as they can combine multiple components into one functional unit, exhibiting ameliorated or new physicochemical properties, which cannot be obtained from the isolated one. The presence of a hollow cavity in the yolk-shell structure allows sufficient exposure of the core while maintaining the protective ability of the shell, which is conducive to retaining the distance-dependent properties of the core. Multishelled hollow structures consisting of two or more mesoporous shells are expected to show superior activities in various applications compared to their bulk counterparts because more active interfaces and unique compartmentation environments can be provided. Therefore, SMMs from single to multilevel structure represent a class of advanced nanostructured materials with unique structures and fascinating properties. In this Account, we highlight the progresses on the synthesis and applications of SMMs from single to multilevel architectures. The synthetic strategies have been summarized and categorized into (i) the modified Stöber method, (ii) the hydrothermal strategy, (iii) the biphase stratification approach, (iv) the nanoemulsion assembly method, (v) the evaporation induced aggregating assembly (EIAA) method, and (vi) the confined self-assembly strategy. Special emphasis is placed on the synthetic principles and underlying mechanisms for precise control of SMMs over the particle sizes, pore sizes, pore structures and functionalities as well as different levels of architectures. Moreover, the implementation performances in catalysis, drug delivery, and energy related fields have been highlighted. Finally, the opportunities and challenges for the future development of SMMs in terms of synthesis and applications are proposed.

13.
Nanotechnology ; 31(2): 024001, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31550701

RESUMO

Nanostructured mesoporous carbon materials have been an attractive material for electrochemical energy storage in the recent decades. However, the controllable synthesis of two-dimensional mesoporous carbon with tunable thickness and desired pore structure is highly challenging. Here, a series of graphene@mesoporous nitrogen-doped carbon (denoted as G@mesoNC) core-shell structured nanosheets with tunable thicknesses have been fabricated via a sample hydrothermal method by using cellulose as the green and cheap carbon precursor. The resultant G@mesoNC nanosheets exhibit a distinct sandwich-like structure with tunable thicknesses (from 10 to 30 nm), a large surface area (562 m2 g-1), a narrow pore size distribution (2.3 nm) and a high nitrogen content (7.95%). Significantly, when being used as the electrode for supercapaciors, the resultant G@mesoNC nanosheets showcase a high specific capacitance of 264 F g-1. Most importantly, there is no substantial capacitance decay after 2500 cycles, indicating the perfect cyclic stability of G@mesoNC nanosheets. Our method paves a new way for synthesizing carbon electrodes for energy storage.

14.
Angew Chem Int Ed Engl ; 59(8): 3287-3293, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-31821658

RESUMO

A universal sequential synthesis strategy in aqueous solution is presented for highly uniform core-shell structured photocatalysts, which consist of a metal sulfide light absorber core and a metal sulfide co-catalyst shell. We show that the sequential chemistry can drive the formation of unique core-shell structures controlled by the constant of solubility product of metal sulfides. A variety of metal sulfide core-shell structures have been demonstrated, including CdS@CoSx , CdS@MnSx , CdS@NiSx , CdS@ZnSx , CuS@CdS, and more complexed CdS@ZnSx @CoSx . The obtained strawberry-like CdS@CoSx core-shell structures exhibit a high photocatalytic H2 production activity of 3.92 mmol h-1 and an impressive apparent quantum efficiency of 67.3 % at 420 nm, which is much better than that of pure CdS nanoballs (0.28 mmol h-1 ), CdS/CoSx composites (0.57 mmol h-1 ), and 5 %wt Pt-loaded CdS photocatalysts (1.84 mmol h-1 ).

15.
J Am Chem Soc ; 141(17): 7073-7080, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964289

RESUMO

Functional mesoporous carbons have attracted significant scientific and technological interest owning to their fascinating and excellent properties. However, controlled synthesis of functional mesoporous carbons with large tunable pore sizes, small particle size, well-designed functionalities, and uniform morphology is still a great challenge. Herein, we report a versatile nanoemulsion assembly approach to prepare N-doped mesoporous carbon nanospheres with high uniformity and large tunable pore sizes (5-37 nm). We show that the organic molecules (e.g., 1,3,5-trimethylbenzene, TMB) not only play an important role in the evolution of pore sizes but also significantly affect the interfacial interaction between soft templates and carbon precursors. As a result, a well-defined Pluronic F127/TMB/dopamine nanoemulsion can be facilely obtained in the ethanol/water system, which directs the polymerization of dopamine into highly uniform polymer nanospheres and their derived N-doped carbon nanospheres with diversely novel structures such as smooth, golf ball, multichambered, and dendritic nanospheres. The resultant uniform dendritic mesoporous carbon nanospheres show an ultralarge pore size (∼37 nm), small particle size (∼128 nm), high surface area (∼635 m2 g-1), and abundant N content (∼6.8 wt %), which deliver high current density and excellent durability toward oxygen reduction reaction in alkaline solution.

16.
J Am Chem Soc ; 140(31): 10009-10015, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29995403

RESUMO

Like surfactants with tunable hydrocarbon chain length, Janus nanoparticles also possess the ability to stabilize emulsions. The volume ratio between the hydrophilic and hydrophobic domains in a single Janus nanoparticle is very important for the stabilization of emulsions, which is still a great challenge. Herein, dual-mesoporous Fe3O4@mC&mSiO2 Janus nanoparticles with spatial isolation of hydrophobic carbon and hydrophilic silica at the single-particle level have successfully been synthesized for the first time by using a novel surface-charge-mediated selective encapsulation approach. The obtained dual-mesoporous Fe3O4@mC&mSiO2 Janus nanoparticles are made up of a pure one-dimensional mesoporous SiO2 nanorod with tunable length (50-400 nm), ∼100 nm wide and ∼2.7 nm mesopores and a closely connected mesoporous Fe3O4@mC magnetic nanosphere (∼150 nm diameter, ∼10 nm mesopores). As a magnetic "solid amphiphilic surfactant", the hydrophilic/hydrophobic ratio can be precisely adjusted by varying the volume ratio between silica and carbon domains, endowing the Janus nanoparticles surfactant-like emulsion stabilization ability and recyclability under a magnetic field. Owing to the total spatial separation of carbon and silica, the Janus nanoparticles with an optimized hydrophilic/hydrophobic ratio show spectacular emulsion stabilizing ability, which is crucial for improving the biphasic catalysis efficiency. By selectively anchoring catalytic active sites into different domains, the fabricated Janus nanoparticles show outstanding performances in biphasic reduction of 4-nitroanisole with 100% conversion efficiency and 700 h-1 high turnover frequency for biphasic cascade synthesis of cinnamic acid.

17.
Analyst ; 139(19): 4994-5000, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25101356

RESUMO

Carbon porous materials (CPMs) with high surface areas up to 2660 m(2) g(-1), directly fabricated by a facile microwave-assisted route, were applied to the electrochemical detection of dopamine (DA). The CPM-modified electrodes exhibited excellent selectivity, a desirable detection limit (2.9 nM), and extraordinary sensitivity (2.56 mA µM(-1) cm(-2)) for detection of DA, even in the presence of large amounts of foreign species, such as ascorbic acid (AA) and uric acid (UA), making feasible the practical applications of these electrodes as DA sensors.


Assuntos
Carbono/química , Dopamina/análise , Técnicas Eletroquímicas , Ácido Ascórbico/química , Eletrodos , Micro-Ondas , Oxirredução , Porosidade , Ácido Úrico/química
18.
Adv Mater ; 35(2): e2207522, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36408927

RESUMO

Electrocatalytic reduction is a sustainable approach for NO3 - removal and high-value N-containing compounds manufacturing, which, however, is strongly obstructed by sluggish kinetics, low selectivity, and poor stability. Herein, the in situ confinement of ultrasmall CuPd alloy nanoparticles in mesochannels of conductive core-shell structured carbon nanotubes@mesoporous carbon substrates (CNTs@mesoC@CuPd) via a simple molecule-mediated interfacial assembly method is reported. As a catalyst for electrocatalytic NO3 - reduction, the CNTs@mesoC@CuPd shows a splendid conversion efficiency (100%), N2  selectivity (98%), cycling stability (>30 days), and removal capacity as high as 30 000 mg N g-1 CuPd, which are much superior to most of the prior reports. Notably, experimental (in situ testing and isotopic labeling) and theoretical results unveil that bimetallic and monometallic catalysts for electrocatalytic NO3 - reduction exhibit exclusive selectivity for N2  and NH3 , respectively. This in situ confinement strategy is universal for the synthesis of stable and highly accessible metallic catalysts, which opens an appealing way to synthesize advanced catalysts with high activity, selectivity, and stability.

19.
Nat Chem ; 15(6): 832-840, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37055572

RESUMO

The ability of Janus nanoparticles to establish biological logic systems has been widely exploited, yet conventional non/uni-porous Janus nanoparticles are unable to fully mimic biological communications. Here we demonstrate an emulsion-oriented assembly approach for the fabrication of highly uniform Janus double-spherical MSN&mPDA (MSN, mesoporous silica nanoparticle; mPDA, mesoporous polydopamine) nanoparticles. The delicate Janus nanoparticle possesses a spherical MSN with a diameter of ~150 nm and an mPDA hemisphere with a diameter of ~120 nm. In addition, the mesopore size in the MSN compartment is tunable from ~3 to ~25 nm, while those in the mPDA compartments range from ~5 to ~50 nm. Due to the different chemical properties and mesopore sizes in the two compartments, we achieve selective loading of guests in different compartments, and successfully establish single-particle-level biological logic gates. The dual-mesoporous structure enables consecutive valve-opening and matter-releasing reactions within one single nanoparticle, facilitating the design of single-particle-level logic systems.


Assuntos
Nanopartículas , Emulsões , Nanopartículas/química , Compostos de Diazônio , Piridinas , Dióxido de Silício/química , Porosidade
20.
Adv Mater ; 34(28): e2202873, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526099

RESUMO

Sodium-ion batteries (SIBs) are a promising candidate for grid-scale energy storage, however, the sluggish ion-diffusion kinetics brought by the large radius of Na+ seriously limits the performance of SIBs, let alone at low temperatures. Herein, a confined acid-base pair self-assembly strategy to synthesize unusual Ti0.88 Nb0.88 O4- x @C for high-performance SIBs operating at room and low temperatures is proposed. The confinement self-assembly of the acid-base pair around the micelles and confined crystallization by the carbon layer realize the formation of ordered and stoichiometric mesoporous frameworks with opened ion channels. Thus, the mesoporous Ti0.88 Nb0.88 O4- x @C exhibits rapid Na+ diffusion kinetics at 25 and -40 °C, which are one order higher than that of the nonporous one. A high reversible capacity of 233 mAh g-1 , excellent rate (a specific capacity of 103 mAh g-1 at 50 C), and cycling performances (<0.03% fading per cycle) can be observed at 25 °C. More importantly, even at -40 °C, the mesoporous Ti0.88 Nb0.88 O4- x @C can still deliver the 161 mAh g-1 capacity, a high initial Coulombic efficiency of 60% and outstanding cycling stability (99 mAh g-1 at 0.5 C after 500 cycles). It is believed this strategy opens a new avenue for constructing novel mesoporous electrode materials for low-temperature energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA