Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 52(16): 9079-9086, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30040406

RESUMO

Sulfate formation on the surface of aqueous microdroplets was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer that was calibrated using Na2SO4(aq) as a function of pH. The observed formation of SO3-•, SO4-•, and HSO4- at pH < 3.5 without the addition of other oxidants indicates that an efficient oxidation pathway takes place involving direct interfacial electron transfer from SO2 to O2 on the surface of aqueous microdroplets. Compared to the well-studied sulfate formation kinetics via oxidation by H2O2(aq), the interfacial SO42- formation rate on the surface of microdroplets was estimated to be proportional to the collision frequency of SO2 with a pH-dependent efficiency factor of 5.6 × 10-5[H+]3.7/([H+]3.7+10-13.5). The rate via the acidic surface reactions is approximately 1-2 orders of magnitude higher than that by H2O2(aq) for a 1.0 ppbv concentration of H2O2( g) interacting with 50 µg/m3 of aerosols. This finding highlights the relative importance of the interfacial SO2 oxidation in the atmosphere. Chemical reactions on the aquated aerosol surfaces are overlooked in most atmospheric chemistry models. This interfacial reaction pathway may help to explain the observed rapid conversion of SO2 to sulfate in mega-cities and nearby regions with high PM2.5 haze aerosol loadings.


Assuntos
Peróxido de Hidrogênio , Sulfatos , Aerossóis , Cidades , Óxidos de Enxofre
2.
J Phys Chem A ; 122(38): 7739-7747, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30179480

RESUMO

The atmospheric reactions of secondary organic material (SOM) with gaseous reactants alter its composition and properties, which can further impact the Earth system. To investigate how water content and precursor affect the reactivity of SOM, the reaction between toluene-derived SOM and ammonia for variable relative humidity (RH) was investigated. A Fourier transform infrared spectrometer was used to monitor the absorbance change of the functional groups as a function of exposure time. There was a fast response to water vapor compared with a gradual spectral variation associated with ammonia uptake. When RH is higher than 25 ± 5%, the spectral changes across 1500-1900 cm-1 showed a decreasing trend for carboxylic acids and an increasing trend for carboxylates, suggesting a neutralization reaction by ammonia uptake. The observed increasing trend for the region of 1270-1360 cm-1 might be associated with amines and suggests the formation of organonitrogen compounds for the toluene-derived SOM aging by ammonia at high RH. The corresponding intensity change of C-O groups (1000-1260 cm-1) with the increased liquid water content as RH increases at the first 6 min suggested that the possible chemical reactions, such as hydrolysis of acetals and hemiacetals to aldehydes and alcohols or esters to carboxylic acids and alcohols, might change the diffusivity of particles and affect the ammonia uptake. The threshold point of ammonia uptake at 30% RH was consistent with a more significant absorbance change of liquid water content and C-O groups at RH ≥ 35 ± 5%. For comparison between anthropogenic and biogenic precursor gases, an isoprene-derived SOM film was also studied. It was more volatile and reactive to ammonia than the toluene-derived SOM. This result implies that the diffusion of ammonia was faster inside isoprene-derived SOM. Overall, the chemical reactions of SOM particles during their atmospheric residence time are precursor- and RH-dependent, which may alter the current understanding of their impact on the Earth system.

3.
Environ Sci Technol ; 49(23): 13768-76, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26270804

RESUMO

The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other megacities around the world.


Assuntos
Poluentes Atmosféricos/química , Sulfatos/química , Dióxido de Enxofre/química , Aerossóis/química , Atmosfera , Pequim , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Oxirredução , Espectrometria de Massas por Ionização por Electrospray/métodos , Sulfitos/química , Dióxido de Enxofre/análise
4.
J Phys Chem A ; 117(1): 108-16, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23237341

RESUMO

The reactive aging of films of secondary organic material (SOM) to ozone, irradiation, and water was studied by attenuated total reflectance infrared spectroscopy (ATR-IR). The films were prepared by deposition onto the ATR elements of particles produced by reaction of isoprene with hydroxyl radicals and of α-pinene with ozone in the Harvard Environmental Chamber (HEC). The infrared spectra showed that the isoprene-derived film had strong hydroxyl absorptions whereas the α-pinene-derived film had strong carbonyl absorptions. The organic films were exposed to dry and humid flows of ozone, as well as to ultraviolet irradiation, to mimic reactive aging processes that can occur in the troposphere. Both the isoprene- and α-pinene-derived films were nonreactive with respect to ozone exposure, for both dry and humid conditions, indicating that the secondary organic material consisted mostly of saturated organic species. Both films, however, were susceptible to aging by ultraviolet radiation possibly due to the presence of organic hydroperoxides, and all functional groups other than carbonyls decreased upon irradiation. In regard to hygroscopicity, as a benchmark the ratio x(W_CO) for oxalic acid of the intensity of the water-bending peak to that of carbonyl absorption (arising from carboxylic acids) was recorded from 20% to 80% relative humidity (RH). This quantity was then also measured for the isoprene- and α-pinene-derived organic films. The result of (x(W_CO))(isoprene) > (x(W_CO))(benchmark) across the range of studied RH values shows that species other than carboxylic acids contributed significantly to the hygroscopicity of the isoprene-derived film. The spectra were consistent with alcohols and hydroperoxides as the hygroscopic components. By comparison, the result of (x(W_CO))(pinene) ≈ (x(W_CO))(benchmark) indicates a dominance of carboxylic acids with respect to the hygroscopicity of this film.

5.
Heliyon ; 7(10): e08210, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34729439

RESUMO

The interaction between transport and chemistry is pivotal for local ozone (O3) concentration, especially for a coastal region where the upstream sources might change diurnally. In the current emission control policy, most pollutants, such as particulate matter, SO2, NOx, and CO, decrease while the annual O3 trend might increase due to the complex feedbacks of precursors. In this study, we investigate the influence of transport upon the wintertime O3 diurnal trend over ZuoYing Kaohsiung, an urban coastal site in southern Taiwan, by constructing a two-dimensional numerical model coupling both physical mechanisms and core chemical processes and provide a feasible emission control strategy. The transport process (i.e., import vs. export) for the daytime is determined using the Leighton Ratio (Φ), the ratio of O3-production over O3-loss rate, under the pseudo-steady-state condition. Φ shows a deviation of -9 to +13% from the photo-stationary state, and experiences a transition from import effect before 10:15 to weakening import or net export effect afterward associated with a net O3 production as sea breeze starts developing. The significantly higher Φ derived from observation than from simulation by a factor of 1.35 might be resulted from the over-reported NO2 due to NOy contribution on the NO2 measurement, and the influence of aerosol and cloud possibly reducing ∼30% on applied NO2 photolysis rate constant, associated with aerosol optical depth of 0.75 ± 0.15 and single scattering albedo of 0.85 ± 0.15. In this studied NOx-saturated regime, the addition of sea breeze convergence over the land enhances the maximal O3 by ∼10%, mainly due to the O3 accumulation (∼88%). Furthermore, the ozone isopleth analysis as a function of non-methane hydrocarbons and NOx emissions provides an achievable strategy to decrease both maximum daily ozone and the increment of ozone from morning to maximum by reducing hydrocarbons and NOx emissions, which can also eliminate the additional nitrate contribution on the aerosols.

6.
J Phys Chem A ; 114(50): 13104-12, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21090825

RESUMO

The heterogeneous reactions of pure micrometer-sized oleic acid droplets with ozone were studied as a function of temperature and physical state. Oxidation reactions were monitored using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) and UV-vis spectrometry. Variations in droplet morphology due to the extent of oxidation were monitored using an optical microscope. Oleic acid droplets were maintained in either solid or liquid state at 9.0 °C. The physical state of the aerosol was determined from the IR absorbance spectra. Oxidation of solid state oleic acid with ozone at 9.0 °C was rapidly converted to the liquid state, which was most likely due to the presence of oxidation products on the surface of the droplets. The fast melting process that resulted from exposure of solid-phase droplets to ozone produced an oxidation rate similar to that for liquid-phase droplets exposed to ozone at the same temperature. Analysis of the carboxylic IR absorbance ratio for esters vs carboxylic acids indicates that the larger ester C═O-to-carboxylic acid C═O ratios at higher temperature appeared to correspond to the production of α-acyloxyalkyl hydroperoxide oligomers and polymers. The wide variation in product yields will result in vastly different physical properties of aerosol particles under different ambient environmental conditions.

7.
ACS Omega ; 5(49): 31858-31866, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344839

RESUMO

A quartz crystal microbalance (QCM) with a high sensitivity of 0.1 ng was applied to monitor the oscillation frequency variation (Δf) of standard single species, two-component systems with typical ambient aerosol compositions, and ambient aerosol filter samples as a function of relative humidity (RH) and determine their deliquescence RH (DRH) and phase transition. Δf is associated with the adsorption or desorption process of water molecules for solid samples and physical properties of the sample film during solid-to-aqueous phase transition (deliquescence). During the pre-deliquescence stage, the water adsorption process led to the increased mass with decreasing Δf, especially for the hydrates such as MgCl2 and Ca(NO3)2, which have more than 20% and 40% increased mass, respectively. The water adsorption process might cause a mass deviation of ambient particulate matter measurement using similar instrument principles. During the deliquescence stage, the observed rapid increasing Δf with RH was caused by a significant change in the physical properties (such as density and viscosity) of the sample film. The determined DRH for a given single-component system is consistent with the results estimated from the thermodynamic models. For a complex system, the QCM can determine the DRH1st well as the eutonic point and track the possible variation of the physical properties of inorganic or with organic acid mixture systems. During the post-deliquescence stage, the gradual increasing trend of Δf with RH for Ca(NO3)2 and an external mixture of NaCl-Ca(NO3)2 was mainly contributed by a stronger RH dependent of physical properties for Ca(NO3)2(aq). Overall, this study provides the possible physical properties variation of common aerosol composition as a function of RH, which was consistent with the results calculated from the thermodynamic models. The stronger water adsorption for MgCl2 and Ca(NO3)2 with solid-like viscosity at RH < DRH might lead to different chemical reactivities in the atmospheric chemistry in addition to the radiative forcing of aerosols caused by the hysteresis.

8.
Sci Rep ; 6: 25504, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27138171

RESUMO

Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus.

9.
Water Environ Res ; 74(6): 545-56, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12540095

RESUMO

Ultrasonic irradiation in the presence of ozone was used to efficiently eliminate methyl tert-butyl ether (MTBE) from groundwater. The sonolytic degradation of MTBE was investigated in three different reactor configurations and frequencies: vibrating-plate reactor (VPR, 358 kHz), near-field acoustical processor (NAP 20 and 16 kHz), and radial-tube resonator (RTR. 20 kHz). The sonochemical reactors can be ordered in terms of their efficiency with respect to the degradation of MTBE in the following way: VPR > RTR > NAP. The higher elimination rates of MTBE in groundwater by combined ultrasound-ozone systems are attributed to the effective conversion of ozone to the OH radical, even in the presence of high alkalinity. Carbonate radicals, which were formed from the oxidation of bicarbonate by hydroxyl radicals, are shown to react with MTBE via a hydrogen-atom abstraction pathway. Methyl-tert-butyl ether was also rapidly eliminated from the groundwater underlying a major intemational airport by direct chemical oxidation with a mixture of hydrogen peroxide and ozone.


Assuntos
Carcinógenos/análise , Éteres Metílicos/análise , Ultrassom , Poluição da Água/prevenção & controle , Peróxido de Hidrogênio/química , Oxidantes/química , Oxidantes Fotoquímicos/química , Oxirredução , Ozônio/química , Poluentes do Solo , Poluentes da Água
10.
J Phys Chem A ; 111(4): 620-32, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17249752

RESUMO

The heterogeneous reactions of oleic acid (OL) and oleic-acid/sodium-chloride(aq) (OL/NaCl(aq)) mixture droplets with ozone are studied at two relative humidities (RH). The reactions were monitored concomitantly using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) for the organic species and UV-vis spectrometry for the ozone concentration in order to investigate reaction rate discrepancies reported in literature as well as the oxidation mechanism. The less volatile products were identified and resolved by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). This led to identification of 13 organic molecules (up to 45 carbons). Identified products were predominantly composed by nananoic acid and azelaic acid. Our results suggest that the propagation reaction is possibly initiated by a secondary reaction such as the stabilized Criegee intermediates reacting with oleic acid. For hygroscopic properties, the ATR-IR spectra at high RH (87 +/- 5%) showed that the hydrophobic oleic acid droplets can take up water slightly when exposed to ozone. For internally mixed OL/NaCl(aq) droplets, the hygroscopic properties of the droplets upon ozone exposure were found to be complex; hygroscopic properties or the growth factors of the droplets are altered as the oxidation products of oleic acid exist concurrently with NaCl(aq). Furthermore, the concentration of ozone was monitored to examine the kinetics of the oxidation reaction. The integrated ozone profile recorded by UV-vis spectrometry showed the consumed ozone represents only 30 +/- 2% of total oleic acid and hence confirmed the existence of secondary reactions. A kinetic model was used to simulate an ozone temporal profile that could only be described if the secondary reactions were included. The discrepancy of ozone uptake coefficients according to the OL and ozone measurements as well as their atmospheric implications are herein discussed.

11.
J Phys Chem A ; 109(20): 4517-30, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16833788

RESUMO

The heterogeneous reactions of deposited, millimeter-sized oleic acid droplets with ozone and nitrate radicals are studied. Attenuated total reflectance infrared spectroscopy (ATR-IR), gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS) are used for product identification and quantification. The condensed-phase products of the ozonolysis of oleic acid droplets are 1-nonanal (30 +/- 3% carbon yield), 9-oxononanoic acid (14 +/- 2%), nonanoic acid (7 +/- 1%), octanoic acid (1 +/- 0.2%), azelaic acid (6 +/- 3%), and unidentified products. The infrared spectra show that a major fraction of the unidentified products contain an ester group. Additionally, the mass spectra show that at least some of the unidentified products have molecular weights greater than 1000 amu, which implicates a polymerization reaction. The observed steps of 172 amu (9-oxononanoic acid) and 188 amu (azelaic acid Criegee intermediate) in the mass spectra suggest that these species are the monomers in the condensed-phase polymerization reactions. 9-Oxononanoic acid is proposed to lengthen the molecular chain via secondary ozonide formation; the azelaic acid Criegee intermediate links molecules units via ester formation (specifically, alpha-acyloxyalkyl hydroperoxides). For the reaction of oleic acid with nitrate radicals, functional groups including -ONO(2), -O(2)NO(2), and -NO(2) are observed in the infrared spectra, and high molecular weight molecules are formed. Environmental scanning electron microscopy (ESEM) is employed to examine the hygroscopic properties of the oleic acid droplets before and after exposure to ozone or nitrate radical. After reaction, the droplets take up water at lower relative humidities compared to the unreacted droplets. The increased hygroscopic response may indicate that the oxidative aging of atmospheric organic aerosol particles has significant impact on radiative forcing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA