Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 9(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34835306

RESUMO

Stony coral tissue loss disease (SCTLD) is an emergent and often lethal coral disease that was first reported near Miami, FL (USA) in 2014. Our objective was to determine if coral colonies showing signs of SCTLD possess a specific microbial signature across five susceptible species sampled in Florida's Coral Reef. Three sample types were collected: lesion tissue and apparently unaffected tissue of diseased colonies, and tissue of apparently healthy colonies. Using 16S rRNA high-throughput gene sequencing, our results show that, for every species, the microbial community composition of lesion tissue was significantly different from healthy colony tissue and from the unaffected tissue of diseased colonies. The lesion tissue of all but one species (Siderastrea siderea) had higher relative abundances of the order Rhodobacterales compared with other types of tissue samples, which may partly explain why S. siderea lesions often differed in appearance compared to other species. The order Clostridiales was also present at relatively high abundances in the lesion tissue of three species compared to healthy and unaffected tissues. Stress often leads to the dysbiosis of coral microbiomes and increases the abundance of opportunistic pathogens. The present study suggests that Rhodobacterales and Clostridiales likely play an important role in SCTLD.

2.
PLoS One ; 15(11): e0241871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33175886

RESUMO

Along the Florida reef tract, stony-coral-tissue-loss disease (SCTLD) has caused extensive mortality of more than 20 scleractinian coral species. The pathogen is unknown, but its epizoology indicates that the disease, facilitated by water currents, has progressed linearly along the tract, affecting reefs at the scale of hundreds of kilometers. To inform ongoing disease mitigation efforts, we examined the small-scale spatial and temporal epidemiology of SCTLD. We established a series of sites in the middle Florida Keys at offshore and inshore locations that had not yet shown signs of SCTLD. We then conducted high-frequency monitoring from February 2018 through September 2019 and documented the onset of SCTLD and its progression through the sites. SCTLD was first observed at one site during early February 2018 and by early March 2018 all sites showed signs of the disease. A dynamic multistate model suggested that disease transmission was independent of coral density and found little evidence of a positive association between a colony showing signs of SCTLD and the condition or distance to its neighboring colonies. The model did, however, indicate that the probability of a colony showing signs of SCTLD increased with increasing colony surface area. These results are consistent with the water-borne transmission of a pathogen that progressed rapidly through the survey area. However, by the end of our survey the progression of SCTLD had slowed, particularly at inshore sites. Many affected colonies no longer exhibited progressive tissue mortality typical of the disease, suggesting the existence of differentially resilient colonies or coral communities, meriting their use for future coral rescue and propagation and disease research. These results are useful for refining ongoing SCTLD mitigation strategies, particularly by determining when disease rates are sufficiently low for direct intervention efforts designed to arrest disease progression on individual coral colonies will be most effective.


Assuntos
Antozoários/crescimento & desenvolvimento , Monitoramento Ambiental/métodos , Animais , Recifes de Corais , Florida/epidemiologia , Dinâmica Populacional , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA