RESUMO
CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.
Assuntos
Doenças do Sistema Nervoso Central/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Fosfotransferases/metabolismo , RNA de Transferência/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Animais , Doenças do Sistema Nervoso Central/patologia , Cérebro/patologia , Pré-Escolar , Endorribonucleases/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Masculino , Camundongos , Camundongos Endogâmicos CBA , Microcefalia/genética , Doenças do Sistema Nervoso Periférico/patologia , RNA de Transferência/genética , Proteínas de Ligação a RNARESUMO
DExD/H-box RNA helicases (DDX/DHX) are encoded by a large paralogous gene family; in a subset of these human helicase genes, pathogenic variation causes neurodevelopmental disorder (NDD) traits and cancer. DHX9 encodes a BRCA1-interacting nuclear helicase regulating transcription, R-loops, and homologous recombination and exhibits the highest mutational constraint of all DDX/DHX paralogs but remains unassociated with disease traits in OMIM. Using exome sequencing and family-based rare-variant analyses, we identified 20 individuals with de novo, ultra-rare, heterozygous missense or loss-of-function (LoF) DHX9 variant alleles. Phenotypes ranged from NDDs to the distal symmetric polyneuropathy axonal Charcot-Marie-Tooth disease (CMT2). Quantitative Human Phenotype Ontology (HPO) analysis demonstrated genotype-phenotype correlations with LoF variants causing mild NDD phenotypes and nuclear localization signal (NLS) missense variants causing severe NDD. We investigated DHX9 variant-associated cellular phenotypes in human cell lines. Whereas wild-type DHX9 was restricted to the nucleus, NLS missense variants abnormally accumulated in the cytoplasm. Fibroblasts from an individual with an NLS variant also showed abnormal cytoplasmic DHX9 accumulation. CMT2-associated missense variants caused aberrant nucleolar DHX9 accumulation, a phenomenon previously associated with cellular stress. Two NDD-associated variants, p.Gly411Glu and p.Arg761Gln, altered DHX9 ATPase activity. The severe NDD-associated variant p.Arg141Gln did not affect DHX9 localization but instead increased R-loop levels and double-stranded DNA breaks. Dhx9-/- mice exhibited hypoactivity in novel environments, tremor, and sensorineural hearing loss. All together, these results establish DHX9 as a critical regulator of mammalian neurodevelopment and neuronal homeostasis.
Assuntos
Doença de Charcot-Marie-Tooth , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , RNA Helicases DEAD-box/genética , Diclorodifenil Dicloroetileno , DNA Helicases , Mamíferos , Proteínas de Neoplasias/genéticaRESUMO
An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion.
Assuntos
Transtorno Autístico , Deficiência Intelectual , Feminino , Humanos , Masculino , Transtorno Autístico/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Hipotonia Muscular/genética , Hipotonia Muscular/complicações , Fenótipo , Síndrome , Fatores de Transcrição/genéticaRESUMO
Hypoxic-ischemic encephalopathy (HIE) occurs in up to 7 out of 1000 births and accounts for almost a quarter of neonatal deaths worldwide. Despite the name, many newborns with HIE have little evidence of perinatal hypoxia. We hypothesized that some infants with HIE have genetic disorders that resemble encephalopathy. We reviewed genetic results for newborns with HIE undergoing exome or genome sequencing at a clinical laboratory (2014-2022). Neonates were included if they had a diagnosis of HIE and were delivered ≥35 weeks. Neonates were excluded for cardiopulmonary pathology resulting in hypoxemia or if neuroimaging suggested postnatal hypoxic-ischemic injury. Of 24 patients meeting inclusion criteria, six (25%) were diagnosed with a genetic condition. Four neonates had variants at loci linked to conditions with phenotypic features resembling HIE, including KIF1A, GBE1, ACTA1, and a 15q13.3 deletion. Two additional neonates had variants in genes not previously associated with encephalopathy, including DUOX2 and PTPN11. Of the six neonates with a molecular diagnosis, two had isolated HIE without apparent comorbidities to suggest a genetic disorder. Genetic diagnoses were identified among neonates with and without sentinel labor events, abnormal umbilical cord gasses, and low Apgar scores. These results suggest that genetic evaluation is clinically relevant for patients with perinatal HIE.
Assuntos
Sequenciamento do Exoma , Hipóxia-Isquemia Encefálica , Humanos , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/diagnóstico por imagem , Recém-Nascido , Feminino , Masculino , Estudos Retrospectivos , Predisposição Genética para Doença , Exoma/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/diagnósticoRESUMO
PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.
Assuntos
Transtornos do Neurodesenvolvimento , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , LinhagemRESUMO
PARS2 encodes an aminoacyl-tRNA synthetase that catalyzes the ligation of proline to mitochondrial prolyl-tRNA molecules. Diseases associated with PARS2 primarily affect the central nervous system, causing early infantile developmental epileptic encephalopathies (EIDEE; DEE75; MIM #618437) with infantile-onset neurodegeneration. Dilated cardiomyopathy has also been reported in the affected individuals. About 10 individuals to date have been described with pathogenic biallelic variants in PARS2. While many of the reported individuals succumbed to the disease in the first two decades of life, autopsy findings have not yet been reported. Here, we describe neuropathological findings in a deceased male with evidence of intracranial calcifications in the basal ganglia, thalamus, cerebellum, and white matter, similar to Aicardi-Goutières syndrome. This report describes detailed autopsy findings in a child with PARS2-related mitochondrial disease and provides plausible evidence that intracranial calcifications may be a previously unrecognized feature of this disorder.
Assuntos
Doenças Autoimunes do Sistema Nervoso , Calcinose , Doenças Mitocondriais , Malformações do Sistema Nervoso , Humanos , Calcinose/genética , Calcinose/patologia , Masculino , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Malformações do Sistema Nervoso/diagnóstico por imagem , Malformações do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Doenças Mitocondriais/diagnóstico por imagem , Aminoacil-tRNA Sintetases/genética , Lactente , Mutação/genética , Diagnóstico Diferencial , Encéfalo/patologia , Encéfalo/diagnóstico por imagemRESUMO
OBJECTIVE: Human genomics established that pathogenic variation in diverse genes can underlie a single disorder. For example, hereditary spastic paraplegia is associated with >80 genes, with frequently only few affected individuals described for each gene. Herein, we characterize a large cohort of individuals with biallelic variation in ENTPD1, a gene previously linked to spastic paraplegia 64 (Mendelian Inheritance in Man # 615683). METHODS: Individuals with biallelic ENTPD1 variants were recruited worldwide. Deep phenotyping and molecular characterization were performed. RESULTS: A total of 27 individuals from 17 unrelated families were studied; additional phenotypic information was collected from published cases. Twelve novel pathogenic ENTPD1 variants are described (NM 001776.6): c.398_399delinsAA; p.(Gly133Glu), c.540del; p.(Thr181Leufs*18), c.640del; p.(Gly216Glufs*75), c.185 T > G; p.(Leu62*), c.1531 T > C; p.(*511Glnext*100), c.967C > T; p.(Gln323*), c.414-2_414-1del, and c.146 A > G; p.(Tyr49Cys) including 4 recurrent variants c.1109 T > A; p.(Leu370*), c.574-6_574-3del, c.770_771del; p.(Gly257Glufs*18), and c.1041del; p.(Ile348Phefs*19). Shared disease traits include childhood onset, progressive spastic paraplegia, intellectual disability (ID), dysarthria, and white matter abnormalities. In vitro assays demonstrate that ENTPD1 expression and function are impaired and that c.574-6_574-3del causes exon skipping. Global metabolomics demonstrate ENTPD1 deficiency leads to impaired nucleotide, lipid, and energy metabolism. INTERPRETATION: The ENTPD1 locus trait consists of childhood disease onset, ID, progressive spastic paraparesis, dysarthria, dysmorphisms, and white matter abnormalities, with some individuals showing neurocognitive regression. Investigation of an allelic series of ENTPD1 (1) expands previously described features of ENTPD1-related neurological disease, (2) highlights the importance of genotype-driven deep phenotyping, (3) documents the need for global collaborative efforts to characterize rare autosomal recessive disease traits, and (4) provides insights into disease trait neurobiology. ANN NEUROL 2022;92:304-321.
Assuntos
Apirase , Deficiência Intelectual , Paraplegia Espástica Hereditária , Substância Branca , Apirase/genética , Disartria , Humanos , Deficiência Intelectual/genética , Mutação/genética , Paraplegia/genética , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/genética , Substância Branca/diagnóstico por imagem , Substância Branca/patologiaRESUMO
Protein phosphatase 1 regulatory subunit 35 (PPP1R35) encodes a centrosomal protein required for recruiting microtubule-binding elongation machinery. Several proteins in this centriole biogenesis pathway correspond to established primary microcephaly (MCPH) genes, and multiple model organism studies hypothesize PPP1R35 as a candidate MCPH gene. Here, using exome sequencing (ES) and family-based rare variant analyses, we report a homozygous, frameshifting indel deleting the canonical stop codon in the last exon of PPP1R35 [Chr7: c.753_*3delGGAAGCGTAGACCinsCG (p.Trp251Cysfs*22)]; the variant allele maps in a 3.7 Mb block of absence of heterozygosity (AOH) in a proband with severe MCPH (-4.3 SD at birth, -6.1 SD by 42 months), pachygyria, and global developmental delay from a consanguineous Turkish kindred. Droplet digital PCR (ddPCR) confirmed mutant mRNA expression in fibroblasts. In silico prediction of the translation of mutant PPP1R35 is expected to be elongated by 18 amino acids before encountering a downstream stop codon. This complex indel allele is absent in public databases (ClinVar, gnomAD, ARIC, 1000 genomes) and our in-house database of 14,000+ exomes including 1800+ Turkish exomes supporting predicted pathogenicity. Comprehensive literature searches for PPP1R35 variants yielded two probands affected with severe microcephaly (-15 SD and -12 SD) with the same homozygous indel from a single, consanguineous, Iranian family from a cohort of 404 predominantly Iranian families. The lack of heterozygous cases in two large cohorts representative of the genetic background of these two families decreased our suspicion of a founder allele and supports the contention of a recurrent mutation. We propose two potential secondary structure mutagenesis models for the origin of this variant allele mediated by hairpin formation between complementary GC rich segments flanking the stop codon via secondary structure mutagenesis.
Assuntos
Microcefalia , Recém-Nascido , Humanos , Microcefalia/genética , Códon de Terminação , Irã (Geográfico) , Proteínas Associadas aos Microtúbulos/genética , Mutação da Fase de Leitura/genética , LinhagemRESUMO
Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.
Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Defeitos Congênitos da Glicosilação , Humanos , Glicosilação , Proteínas Adaptadoras de Transporte Vesicular/genética , Fibroblastos/metabolismo , Defeitos Congênitos da Glicosilação/genética , FenótipoRESUMO
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Assuntos
Epilepsia Generalizada , Trocador de Sódio e Cálcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrogênio/metabolismo , Trocador de Sódio e Cálcio/genéticaRESUMO
Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.
Assuntos
Variação Genética/genética , Lisencefalia/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Alelos , Encéfalo/metabolismo , Movimento Celular/genética , Criança , Exoma/genética , Feminino , Homozigoto , Humanos , Masculino , Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Neurônios/metabolismo , Fenótipo , Tubulina (Proteína)/genéticaRESUMO
Homozygous pathogenic variants in WDR45B were first identified in six subjects from three unrelated families with global development delay, refractory seizures, spastic quadriplegia, and brain malformations. Since the initial report in 2018, no further cases have been described. In this report, we present 12 additional individuals from seven unrelated families and their clinical, radiological, and molecular findings. Six different variants in WDR45B were identified, five of which are novel. Microcephaly and global developmental delay were observed in all subjects, and seizures and spastic quadriplegia in most. Common findings on brain imaging include cerebral atrophy, ex vacuo ventricular dilatation, brainstem volume loss, and symmetric under-opercularization. El-Hattab-Alkuraya syndrome is associated with a consistent phenotype characterized by early onset cerebral atrophy resulting in microcephaly, developmental delay, spastic quadriplegia, and seizures. The phenotype appears to be more severe among individuals with loss-of-function variants whereas those with missense variants were less severely affected suggesting a potential genotype-phenotype correlation in this disorder. A brain imaging pattern emerges which is consistent among individuals with loss-of-function variants and could potentially alert the neuroradiologists or clinician to consider WDR45B-related El-Hattab-Alkuraya syndrome.
Assuntos
Microcefalia , Malformações do Sistema Nervoso , Atrofia , Doenças Ósseas Metabólicas , Defeitos Congênitos da Glicosilação , Homozigoto , Humanos , Microcefalia/diagnóstico por imagem , Microcefalia/genética , Microcefalia/patologia , Linhagem , Fenótipo , Quadriplegia/genética , Convulsões/diagnóstico por imagem , Convulsões/genéticaRESUMO
The Mediator multiprotein complex functions as a regulator of RNA polymerase II-catalyzed gene transcription. In this study, exome sequencing detected biallelic putative disease-causing variants in MED27, encoding Mediator complex subunit 27, in 16 patients from 11 families with a novel neurodevelopmental syndrome. Patient phenotypes are highly homogeneous, including global developmental delay, intellectual disability, axial hypotonia with distal spasticity, dystonic movements, and cerebellar hypoplasia. Seizures and cataracts were noted in severely affected individuals. Identification of multiple patients with biallelic MED27 variants supports the critical role of MED27 in normal human neural development, particularly for the cerebellum. ANN NEUROL 2021;89:828-833.
Assuntos
Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Distonia/genética , Complexo Mediador/genética , Malformações do Sistema Nervoso/genética , Adolescente , Adulto , Sequência de Aminoácidos , Catarata/genética , Criança , Pré-Escolar , Epilepsia/genética , Variação Genética , Humanos , Lactente , Fenótipo , Sequenciamento do ExomaRESUMO
PURPOSE: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. METHODS: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. RESULTS: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores -0.95 to -5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.1359_1362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. CONCLUSION: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy.
Assuntos
Paralisia Cerebral , Epilepsia , Microcefalia , Transtornos do Neurodesenvolvimento , Proteínas Nucleares/genética , Paralisia Cerebral/genética , Epilepsia/genética , Humanos , Microcefalia/genética , Microcefalia/patologia , Transtornos do Neurodesenvolvimento/genética , Linhagem , Splicing de RNARESUMO
PURPOSE: To investigate the effect of PLXNA1 variants on the phenotype of patients with autosomal dominant and recessive inheritance patterns and to functionally characterize the zebrafish homologs plxna1a and plxna1b during development. METHODS: We assembled ten patients from seven families with biallelic or de novo PLXNA1 variants. We describe genotype-phenotype correlations, investigated the variants by structural modeling, and used Morpholino knockdown experiments in zebrafish to characterize the embryonic role of plxna1a and plxna1b. RESULTS: Shared phenotypic features among patients include global developmental delay (9/10), brain anomalies (6/10), and eye anomalies (7/10). Notably, seizures were predominantly reported in patients with monoallelic variants. Structural modeling of missense variants in PLXNA1 suggests distortion in the native protein. Our zebrafish studies enforce an embryonic role of plxna1a and plxna1b in the development of the central nervous system and the eye. CONCLUSION: We propose that different biallelic and monoallelic variants in PLXNA1 result in a novel neurodevelopmental syndrome mainly comprising developmental delay, brain, and eye anomalies. We hypothesize that biallelic variants in the extracellular Plexin-A1 domains lead to impaired dimerization or lack of receptor molecules, whereas monoallelic variants in the intracellular Plexin-A1 domains might impair downstream signaling through a dominant-negative effect.
Assuntos
Anormalidades do Olho , Transtornos do Neurodesenvolvimento , Animais , Anormalidades do Olho/genética , Estudos de Associação Genética , Humanos , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Receptores de Superfície Celular , Peixe-Zebra/genéticaRESUMO
The RNA exosome is a multi-subunit complex involved in the processing, degradation, and regulated turnover of RNA. Several subunits are linked to Mendelian disorders, including pontocerebellar hypoplasia (EXOSC3, MIM #614678; EXOSC8, MIM #616081: and EXOSC9, MIM #618065) and short stature, hearing loss, retinitis pigmentosa, and distinctive facies (EXOSC2, MIM #617763). More recently, EXOSC5 (MIM *606492) was found to underlie an autosomal recessive neurodevelopmental disorder characterized by developmental delay, hypotonia, cerebellar abnormalities, and dysmorphic facies. An unusual feature of EXOSC5-related disease is the occurrence of complete heart block requiring a pacemaker in a subset of affected individuals. Here, we provide a detailed clinical and molecular characterization of two siblings with microcephaly, developmental delay, cerebellar volume loss, hypomyelination, with cardiac conduction and rhythm abnormalities including sinus node dysfunction, intraventricular conduction delay, atrioventricular block, and ventricular tachycardia (VT) due to compound heterozygous variants in EXOSC5: (1) NM_020158.4:c.341C > T (p.Thr114Ile; pathogenic, previously reported) and (2) NM_020158.4:c.302C > A (p.Thr101Lys; novel variant). A review of the literature revealed an additional family with biallelic EXOSC5 variants and cardiac conduction abnormalities. These clinical and molecular data provide compelling evidence that cardiac conduction abnormalities and arrhythmias are part of the EXOSC5-related disease spectrum and argue for proactive screening due to potential risk of sudden cardiac death.
Assuntos
Antígenos de Neoplasias/genética , Morte Súbita Cardíaca/etiologia , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Fenótipo , Proteínas de Ligação a RNA/genética , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/genética , Criança , Ecocardiografia , Eletrocardiografia , Fácies , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Linhagem , Análise de Sequência de DNA , Adulto JovemRESUMO
Gillespie syndrome (GLSP) is characterized by bilateral symmetric partial aplasia of the iris presenting as a fixed and large pupil, cerebellar hypoplasia with ataxia, congenital hypotonia, and varying levels of intellectual disability. GLSP is caused by either biallelic or heterozygous, dominant-negative, pathogenic variants in ITPR1. Here, we present a 5-year-old male with GLSP who was found to have a heterozygous, de novo intronic variant in ITPR1 (NM_001168272.1:c.5935-17G > A) through genome sequencing (GS). Sanger sequencing of cDNA from this individual's fibroblasts showed the retention of 15 nucleotides from intron 45, which is predicted to cause an in-frame insertion of five amino acids near the C-terminal transmembrane domain of ITPR1. In addition, qPCR and cDNA sequencing demonstrated reduced expression of both ITPR1 alleles in fibroblasts when compared to parental samples. Given the close proximity of the predicted in-frame amino acid insertion to the site of previously described heterozygous, de novo, dominant-negative, pathogenic variants in GLSP, we predict that this variant also has a dominant-negative effect on ITPR1 channel function. Overall, this is the first report of a de novo intronic variant causing GLSP, which emphasizes the utility of GS and cDNA studies for diagnosing patients with a clinical presentation of GLSP and negative clinical exome sequencing.
Assuntos
Aniridia/diagnóstico , Aniridia/genética , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Receptores de Inositol 1,4,5-Trifosfato/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Íntrons , Mutação , Alelos , Pré-Escolar , Análise Mutacional de DNA , Fácies , Estudos de Associação Genética/métodos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Avaliação de Sintomas , Sequenciamento Completo do GenomaRESUMO
Alkylated DNA repair protein AlkB homolog 8 (ALKBH8) is a member of the AlkB family of dioxygenases. ALKBH8 is a methyltransferase of the highly variable wobble nucleoside position in the anticodon loop of tRNA and thus plays a critical role in tRNA modification by preserving codon recognition and preventing errors in amino acid incorporation during translation. Moreover, its activity catalyzes uridine modifications that are proposed to be critical for accurate protein translation. Previously, two distinct homozygous truncating variants in the final exon of ALKBH8 were described in two unrelated large Saudi Arabian kindreds with intellectual developmental disorder and autosomal recessive 71 (MRT71) syndrome (MIM# 618504). Here, we report a third family-of Egyptian descent-harboring a novel homozygous frame-shift variant in the last exon of ALKBH8. Two affected siblings in this family exhibit global developmental delay and intellectual disability as shared characteristic features of MRT71 syndrome, and we further characterize their observed dysmorphic features and brain MRI findings. This description of a third family with a truncating ALKBH8 variant from a distinct population broadens the phenotypic and genotypic spectrum of MRT71 syndrome, affirms that perturbations in tRNA biogenesis can contribute to neurogenetic disease traits, and firmly establishes ALKBH8 as a novel neurodevelopmental disease gene.
Assuntos
Homólogo AlkB 8 da RNAt Metiltransferase/genética , Encéfalo/diagnóstico por imagem , Predisposição Genética para Doença , Transtornos do Neurodesenvolvimento/genética , Adolescente , Encéfalo/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/patologia , LinhagemRESUMO
The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.
Assuntos
Autofagia/genética , Anormalidades Craniofaciais/genética , Fibroblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Atrofia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico por imagem , Surdez/genética , Surdez/fisiopatologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Microscopia de Fluorescência , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Quadriplegia/genética , Quadriplegia/fisiopatologia , Sítios de Splice de RNA/genética , SíndromeRESUMO
BACKGROUND: Traumatic brain injury (TBI) is associated with considerable mortality and morbidity in adolescents, but positive outcomes are possible. Resilience is the concept that some individuals flourish despite significant adversity. OBJECTIVE: To determine if there is a relationship between resilience-promoting factors that are known to promote resilience and white matter (WM) microstructure 1 year after complicated mild TBI or moderate or severe TBI that is sustained by adolescents. METHOD: We examined the relationship between performance on a self-report measure of resilience-promoting factors and WM integrity assessed by diffusion tensor imaging in a group of adolescents who had sustained either a TBI (n = 38) or an orthopedic injury (OI) (n = 23). RESULTS: Immediately following injury, the individuals with TBI and the OI controls had comparable levels of resilience-promoting factors; however, at 1 year post injury, the TBI group endorsed fewer resilience-promoting factors and exhibited WM disruption compared with the OI controls. The individuals with TBI who had more resilience-promoting factors at 1 year post injury exhibited increased WM integrity, but the OI controls did not. Findings were particularly strong for the following structures: anterior corona radiata, anterior limb of the internal capsule, and genu of the corpus callosum-structures that are implicated in social cognition and are frequently disrupted after TBI. Relationships were notable for caregiver and community-level resilience-promoting factors. CONCLUSION: The current findings are some of the first to indicate neurobiological evidence of previously noted buffering effects of resilience-promoting factors in individuals with TBI.