Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 55(5): 895-911.e10, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35483356

RESUMO

Different effector arms of the immune system are optimized to protect from different classes of pathogens. In some cases, pathogens manipulate the host immune system to promote the wrong type of effector response-a phenomenon known as immune deviation. Typically, immune deviation helps pathogens to avoid destructive immune responses. Here, we report on a type of immune deviation whereby an opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), induces the type 2 immune response resulting in mucin production that is used as an energy source by the pathogen. Specifically, P. aeruginosa-secreted toxin, LasB, processed and activated epithelial amphiregulin to induce type 2 inflammation and mucin production. This "niche remodeling" by P. aeruginosa promoted colonization and, as a by-product, allergic sensitization. Our study thus reveals a type of bacterial immune deviation by increasing nutrient supply. It also uncovers a mechanism of allergic sensitization by a bacterial virulence factor.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Proteínas de Bactérias , Humanos , Inflamação , Mucinas
2.
Genes Dev ; 32(13-14): 903-908, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950491

RESUMO

Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency.


Assuntos
Exorribonucleases/genética , Macrossomia Fetal/genética , Fator de Crescimento Insulin-Like II/genética , Regulação para Cima , Tumor de Wilms/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mutação , Néfrons/citologia , Néfrons/fisiopatologia , Células-Tronco
3.
J Virol ; 96(9): e0035222, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35446142

RESUMO

Influenza A viruses (IAV) can cause severe disease and death in humans. IAV infection and the accompanying immune response can result in systemic inflammation, leading to intestinal damage and disruption of the intestinal microbiome. Here, we demonstrate that a specific subset of epithelial cells, tuft cells, increase across the small intestine during active respiratory IAV infection. Upon viral clearance, tuft cell numbers return to baseline levels. Intestinal tuft cell increases were not protective against disease, as animals with either increased tuft cells or a lack of tuft cells did not have any change in disease morbidity after infection. Respiratory IAV infection also caused transient increases in type 1 and 2 innate lymphoid cells (ILC1 and ILC2, respectively) in the small intestine. ILC2 increases were significantly blunted in the absence of tuft cells, whereas ILC1s were unaffected. Unlike the intestines, ILCs in the lungs were not altered in the absence of tuft cells. This work establishes that respiratory IAV infection causes dynamic changes to tuft cells and ILCs in the small intestines and that tuft cells are necessary for the infection-induced increase in small intestine ILC2s. These intestinal changes in tuft cell and ILC populations may represent unexplored mechanisms preventing systemic infection and/or contributing to severe disease in humans with preexisting conditions. IMPORTANCE Influenza A virus (IAV) is a respiratory infection in humans that can lead to a wide range of symptoms and disease severity. Respiratory infection can cause systemic inflammation and damage in the intestines. Few studies have explored how inflammation alters the intestinal environment. We found that active infection caused an increase in the epithelial population called tuft cells as well as type 1 and 2 innate lymphoid cells (ILCs) in the small intestine. In the absence of tuft cells, this increase in type 2 ILCs was seriously blunted, whereas type 1 ILCs still increased. These findings indicate that tuft cells are necessary for infection-induced changes in small intestine type 2 ILCs and implicate tuft cells as regulators of the intestinal environment in response to systemic inflammation.


Assuntos
Enterite , Vírus da Influenza A , Intestino Delgado , Infecções por Orthomyxoviridae , Animais , Enterite/imunologia , Enterite/fisiopatologia , Enterite/virologia , Humanos , Imunidade Inata , Vírus da Influenza A/imunologia , Intestino Delgado/citologia , Intestino Delgado/virologia , Linfócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Infecções por Orthomyxoviridae/virologia
4.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507952

RESUMO

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Tropismo Viral , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , COVID-19/genética , Epitélio/imunologia , Epitélio/virologia , Humanos , Interferons/genética , Interferons/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/efeitos dos fármacos , Tropismo Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
5.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36982203

RESUMO

Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.


Assuntos
Poluentes Atmosféricos , Masculino , Camundongos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Biocombustíveis/toxicidade , Biocombustíveis/análise , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Enxofre , Inflamação
6.
J Bacteriol ; 204(5): e0006422, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35389253

RESUMO

Chronic rhinosinusitis (CRS) is characterized by immune dysfunction, mucus hypersecretion, and persistent infection of the paranasal sinuses. While Staphylococcus aureus is a primary CRS pathogen, recent sequence-based surveys have found increased relative abundances of anaerobic bacteria, suggesting that S. aureus may experience altered metabolic landscapes in CRS relative to healthy airways. To test this possibility, we characterized the growth kinetics and transcriptome of S. aureus in supernatants of the abundant CRS anaerobe Fusobacterium nucleatum. While growth was initially delayed, S. aureus ultimately grew to similar levels as in the control medium. The transcriptome was significantly affected by F. nucleatum metabolites, with the agr quorum sensing system notably repressed. Conversely, expression of fadX, encoding a putative propionate coenzyme A (CoA)-transferase, was significantly increased, leading to our hypothesis that short-chain fatty acids (SCFAs) produced by F. nucleatum could mediate S. aureus growth behavior and gene expression. Supplementation with propionate and butyrate, but not acetate, recapitulated delayed growth phenotypes observed in F. nucleatum supernatants. A fadX mutant was found to be more sensitive than wild type to propionate, suggesting a role for FadX in the S. aureus SCFA stress response. Interestingly, spontaneous resistance to butyrate, but not propionate, was observed frequently. Whole-genome sequencing and targeted mutagenesis identified codY mutants as resistant to butyrate inhibition. Together, these data show that S. aureus physiology is dependent on its cocolonizing microbiota and metabolites they exchange and indicate that propionate and butyrate may act on different targets in S. aureus to suppress its growth. IMPORTANCE Staphylococcus aureus is an important CRS pathogen, and yet it is found in the upper airways of 30% to 50% of people without complications. The presence of strict and facultative anaerobic bacteria in CRS sinuses has recently spurred research into bacterial interactions and how they influence S. aureus physiology and pathogenesis. We show here that propionate and butyrate produced by one such CRS anaerobe, namely, Fusobacterium nucleatum, alter the growth and gene expression of S. aureus. We show that fadX is important for S. aureus to resist propionate stress and that the CodY regulon mediates growth in inhibitory concentrations of butyrate. This work highlights the possible complexity of S. aureus-anaerobe interactions and implicates membrane stress as a possible mechanism influencing S. aureus behavior in CRS sinuses.


Assuntos
Sinusite , Infecções Estafilocócicas , Bactérias/genética , Bactérias Anaeróbias , Butiratos , Doença Crônica , Ácidos Graxos Voláteis , Humanos , Propionatos , Regulon , Sinusite/genética , Sinusite/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
7.
Med J Aust ; 216(1): 27-32, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34528266

RESUMO

OBJECTIVES: To assess the chemical composition of electronic cigarette liquids (e-liquids) sold in Australia, in both their fresh and aged forms. DESIGN, SETTING: Gas chromatography-mass spectrometry analysis of commercial e-liquids sold in Australia (online and physical stores). MAIN OUTCOME MEASURES: Chemical composition of 65 Australian e-liquids - excipients/solvents, flavouring chemicals, other known e-liquid constituents (including nicotine), and polycyclic aromatic hydrocarbons - before and after an accelerated ageing process that simulated the effects of vaping. RESULTS: The measured levels of propylene glycol and glycerol often diverged from those recorded on the e-liquid label. All e-liquids contained one or more potentially harmful chemicals, including benzaldehyde, menthol, trans-cinnamaldehyde, and polycyclic aromatic hydrocarbons. Nicotine or nicotyrine were detected in a small proportion of e-liquids at extremely low concentrations. CONCLUSIONS: Australian e-liquids contain a wide variety of chemicals for which information on inhalation toxicity is not available. Further analyses are required to assess the potential long term effects of e-cigarette use on health.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/normas , Rotulagem de Produtos/normas , Acroleína/análogos & derivados , Acroleína/análise , Acroleína/normas , Administração por Inalação , Austrália , Aromatizantes/análise , Aromatizantes/normas , Cromatografia Gasosa-Espectrometria de Massas , Nicotina/análise , Nicotina/normas , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/normas , Propilenoglicol/análise , Propilenoglicol/normas
8.
Pediatr Emerg Care ; 38(10): 506-510, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083194

RESUMO

OBJECTIVES: Capillary refill time (CRT) to assess peripheral perfusion in children with suspected shock may be subject to poor reproducibility. Our objectives were to compare video-based and bedside CRT assessment using a standardized protocol and evaluate interrater and intrarater consistency of video-based CRT (VB-CRT) assessment. We hypothesized that measurement errors associated with raters would be low for both standardized bedside CRT and VB-CRT as well as VB-CRT across raters. METHODS: Ninety-nine children (aged 1-12 y) had 5 consecutive bedside CRT assessments by an experienced critical care clinician following a standardized protocol. Each CRT assessment was video recorded on a black background. Thirty video clips (10 with bedside CRT < 1 s, 10 with CRT 1-2 s, and 10 with CRT > 2 s) were randomly selected and presented to 10 clinicians twice in randomized order. They were instructed to push a button when they visualized release of compression and completion of a capillary refill. The correlation and absolute difference between bedside and VB-CRT were assessed. Consistency across raters and within each rater was analyzed using the intraclass correlation coefficient (ICC). A Generalizability study was performed to evaluate sources of variation. RESULTS: We found moderate agreement between bedside and VB-CRT observations (r = 0.65; P < 0.001). The VB-CRT values were shorter by 0.17 s (95% confidence interval, 0.09-0.25; P < 0.001) on average compared with bedside CRT. There was moderate agreement in VB-CRT across raters (ICC = 0.61). Consistency of repeated VB-CRT within each rater was moderate (ICC = 0.71). Generalizability study revealed the source of largest variance was from individual patient video clips (57%), followed by interaction of the VB-CRT reviewer and patient video clip (10.7%). CONCLUSIONS: Bedside and VB-CRT observations showed moderate consistency. Using video-based assessment, moderate consistency was also observed across raters and within each rater. Further investigation to standardize and automate CRT measurement is warranted.


Assuntos
Hemodinâmica , Criança , Humanos , Reprodutibilidade dos Testes
9.
Infect Immun ; 89(9): e0015321, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34125598

RESUMO

Staphylococcus aureus is associated with the development of persistent and severe inflammatory diseases of the upper airways. Yet, S. aureus is also carried asymptomatically in the sinonasal cavity of ∼50% of healthy adults. The causes of this duality and host and microbial factors that tip the balance between S. aureus pathogenesis and commensalism are poorly understood. We have shown that by degrading mucins, anaerobic microbiota support the growth of airway pathogens by liberating metabolites that are otherwise unavailable. Given the widely reported culture-based detection of anaerobes from individuals with chronic rhinosinusitis (CRS), here we tested our hypothesis that CRS microbiota is characterized by a mucin-degrading phenotype that alters S. aureus physiology. Using 16S rRNA gene sequencing, we indeed observed an increased prevalence and abundance of anaerobes in CRS relative to non-CRS controls. PICRUSt2-based functional predictions suggested increased mucin degradation potential among CRS microbiota that was confirmed by direct enrichment culture. Prevotella, Fusobacterium, and Streptococcus comprised a core mucin-degrading community across CRS subjects that generated a nutrient pool that augmented S. aureus growth on mucin as a carbon source. Finally, using transcriptome sequencing (RNA-seq), we observed that S. aureus transcription is profoundly altered in the presence of mucin-derived metabolites, though expression of several key metabolism- and virulence-associated pathways varied between CRS-derived bacterial communities. Together, these data support a model in which S. aureus metabolism and virulence in the upper airways are dependent upon the composition of cocolonizing microbiota and the metabolites they exchange.


Assuntos
Interações Hospedeiro-Patógeno , Interações Microbianas , Microbiota , Infecções Respiratórias/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Anaerobiose , Doença Crônica , Suscetibilidade a Doenças , Humanos
11.
PLoS Genet ; 13(7): e1006878, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28671948

RESUMO

In Enterococcus faecalis, sex pheromone-mediated transfer of antibiotic resistance plasmids can occur under unfavorable conditions, for example, when inducing pheromone concentrations are low and inhibiting pheromone concentrations are high. To better understand this paradox, we adapted fluorescence in situ hybridization chain reaction (HCR) methodology for simultaneous quantification of multiple E. faecalis transcripts at the single cell level. We present direct evidence for variability in the minimum period, maximum response level, and duration of response of individual cells to a specific inducing condition. Tracking of induction patterns of single cells temporally using a fluorescent reporter supported HCR findings. It also revealed subpopulations of rapid responders, even under low inducing pheromone concentrations where the overall response of the entire population was slow. The strong, rapid induction of small numbers of cells in cultures exposed to low pheromone concentrations is in agreement with predictions of a stochastic model of the enterococcal pheromone response. The previously documented complex regulatory circuitry controlling the pheromone response likely contributes to stochastic variation in this system. In addition to increasing our basic understanding of the biology of a horizontal gene transfer system regulated by cell-cell signaling, demonstration of the stochastic nature of the pheromone response also impacts any future efforts to develop therapeutic agents targeting the system. Quantitative single cell analysis using HCR also has great potential to elucidate important bacterial regulatory mechanisms not previously amenable to study at the single cell level, and to accelerate the pace of functional genomic studies.


Assuntos
Enterococcus faecalis/genética , Transferência Genética Horizontal , Feromônios/genética , Atrativos Sexuais/genética , Farmacorresistência Bacteriana/genética , Enterococcus faecalis/efeitos dos fármacos , Genoma Bacteriano , Humanos , Hibridização in Situ Fluorescente , Plasmídeos/genética , Análise de Célula Única
12.
Development ; 143(19): 3632-3637, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702788

RESUMO

In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.


Assuntos
Hibridização In Situ/métodos , RNA Mensageiro/metabolismo , Animais , Drosophila , Embrião não Mamífero/metabolismo , Humanos , Peixe-Zebra
13.
Environ Sci Technol ; 53(19): 11437-11446, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31453689

RESUMO

As global biodiesel production increases, there are concerns over the potential health impact of exposure to the exhaust, particularly in regard to young children who are at high risk because of their continuing lung development. Using human airway epithelial cells obtained from young children, we compared the effects of exposure to exhaust generated by a diesel engine with Euro V/VI emission controls running on conventional diesel (ultra-low-sulfur mineral diesel, ULSD), soy biodiesel (B100), or a 20% blend of soy biodiesel with diesel (B20). The exhaust output of biodiesel was found to contain significantly more respiratory irritants, including NOx, CO, and CO2, and a larger overall particle mass. Exposure to biodiesel exhaust resulted in significantly greater cell death and a greater release of immune mediators compared to both air controls and ULSD exhaust. These results have concerning implications for potential global health impacts, particularly for the pediatric population.


Assuntos
Poluentes Atmosféricos , Emissões de Veículos , Biocombustíveis , Criança , Pré-Escolar , Células Epiteliais , Gasolina , Humanos , Minerais , Material Particulado
14.
PLoS Pathog ; 12(8): e1005846, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27548479

RESUMO

Chronic lung infections in cystic fibrosis (CF) patients are composed of complex microbial communities that incite persistent inflammation and airway damage. Despite the high density of bacteria that colonize the lower airways, nutrient sources that sustain bacterial growth in vivo, and how those nutrients are derived, are not well characterized. In this study, we examined the possibility that mucins serve as an important carbon reservoir for the CF lung microbiota. While Pseudomonas aeruginosa was unable to efficiently utilize mucins in isolation, we found that anaerobic, mucin-fermenting bacteria could stimulate the robust growth of CF pathogens when provided intact mucins as a sole carbon source. 16S rRNA sequencing and enrichment culturing of sputum also identified that mucin-degrading anaerobes are ubiquitous in the airways of CF patients. The collective fermentative metabolism of these mucin-degrading communities in vitro generated amino acids and short chain fatty acids (propionate and acetate) during growth on mucin, and the same metabolites were also found in abundance within expectorated sputum. The significance of these findings was supported by in vivo P. aeruginosa gene expression, which revealed a heightened expression of genes required for the catabolism of propionate. Given that propionate is exclusively derived from bacterial fermentation, these data provide evidence for an important role of mucin fermenting bacteria in the carbon flux of the lower airways. More specifically, microorganisms typically defined as commensals may contribute to airway disease by degrading mucins, in turn providing nutrients for pathogens otherwise unable to efficiently obtain carbon in the lung.


Assuntos
Fibrose Cística/microbiologia , Pulmão/microbiologia , Mucinas/metabolismo , Propionatos/metabolismo , Pseudomonas aeruginosa/metabolismo , Fibrose Cística/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Pseudomonas aeruginosa/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
15.
Stem Cells ; 35(2): 532-544, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27733015

RESUMO

Multiple sclerosis (MS) is a common neurodegenerative disease and remains an unmet clinical challenge. In MS, an autoimmune response leads to immune cell infiltration, inflammation, demyelination, and lesions in central nervous system (CNS) tissues resulting in tremors, fatigue, and progressive loss of motor function. These pathologic hallmarks are effectively reproduced in the murine experimental autoimmune encephalomyelitis (EAE) model. The stromal vascular fraction (SVF) of adipose tissue is composed of adipose-derived stromal/stem cells (ASC), adipocytes, and various leukocytes. The SVF can be culture expanded to generate ASC lines. Clinical trials continue to demonstrate the safety and efficacy of ASC therapies for treating several diseases. However, little is known about the effectiveness of the SVF for neurodegenerative diseases, such as MS. At late-stage disease, EAE mice show severe motor impairment. The goal for these studies was to test the effectiveness of SVF cells and ASC in EAE mice after the onset of neuropathology. The clinical scoring, behavior, motor function, and histopathologic analyses revealed significant improvements in EAE mice treated with the SVF or ASC. Moreover, SVF treatment mediated more robust improvements to CNS pathology than ASC treatment based on significant modulations of inflammatory factors. The most pronounced changes following SVF treatment were the high levels of interleukin-10 in the peripheral blood, lymphoid and CNS tissues along with the induction of regulatory T cells in the lymph nodes which indicate potent immunomodulatory effects. The data indicate SVF cells effectively ameliorated the EAE immunopathogenesis and supports the potential use of SVF for treating MS. Stem Cells 2017;35:532-544.


Assuntos
Tecido Adiposo/citologia , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Animais , Proteínas Sanguíneas/metabolismo , Contagem de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Imunomodulação , Mediadores da Inflamação/metabolismo , Tecido Linfoide/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos C57BL , Atividade Motora , Esclerose Múltipla/sangue , Fenótipo , Medula Espinal/patologia , Células Estromais/citologia
16.
Langmuir ; 34(21): 6307-6313, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29737855

RESUMO

This work examines the ejection of droplets from a bursting gas bubble on a free liquid surface, both experimentally and numerically. We explore the physical processes which govern the bursting of bubbles and the subsequent formation of "jet" droplets. We present new relationships regarding the dependence of jet drop formation on bubble diameter. Furthermore, we propose a new dimensionless parameter to describe the region of properties where "jet" drops will occur. This parameter, termed the droplet number ( Dn), complements existing parameters defining jet drop formation, namely, a maximum Ohnesorge number and a maximum Bond number.

17.
Proc Natl Acad Sci U S A ; 112(1): 244-9, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535390

RESUMO

The candidate phylum TM7 is globally distributed and often associated with human inflammatory mucosal diseases. Despite its prevalence, the TM7 phylum remains recalcitrant to cultivation, making it one of the most enigmatic phyla known. In this study, we cultivated a TM7 phylotype (TM7x) from the human oral cavity. This extremely small coccus (200-300 nm) has a distinctive lifestyle not previously observed in human-associated microbes. It is an obligate epibiont of an Actinomyces odontolyticus strain (XH001) yet also has a parasitic phase, thereby killing its host. This first completed genome (705 kb) for a human-associated TM7 phylotype revealed a complete lack of amino acid biosynthetic capacity. Comparative genomics analyses with uncultivated environmental TM7 assemblies show remarkable conserved gene synteny and only minimal gene loss/gain that may have occurred as TM7x adapted to conditions within the human host. Transcriptomic and metabolomic profiles provided the first indications, to our knowledge, that there is signaling interaction between TM7x and XH001. Furthermore, the induction of TNF-α production in macrophages by XH001 was repressed in the presence of TM7x, suggesting its potential immune suppression ability. Overall, our data provide intriguing insights into the uncultivability, pathogenicity, and unique lifestyle of this previously uncharacterized oral TM7 phylotype.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Genoma Bacteriano/genética , Parasitos/genética , Filogenia , Simbiose , Actinomyces , Animais , Bactérias/classificação , Bactérias/ultraestrutura , Especificidade de Hospedeiro , Humanos , Macrófagos/metabolismo , Dados de Sequência Molecular , Boca/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sintenia , Transcriptoma/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
J Occup Environ Hyg ; 15(12): 824-832, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30204581

RESUMO

Agricultural operations routinely expose farm workers to high levels of soil dust and other airborne particulate matter that have been linked to adverse health outcomes. The main objective of this study was to investigate exposure to agricultural dust during seeding operations of Western Australian farm workers. Twenty-one wheat-belt farms were recruited to participate in the study. Data were collected over the 6-week seeding period of April-June 2014. Each farm was visited once, and workers were asked to complete a workplace survey that asked questions related to minimizing exposure to agricultural dusts and occupational health and safety issues on their farm. Farmers were also asked to simultaneously participate in monitoring of personal exposure to inhalable or respirable dust along with real-time monitoring for particulate air pollution in their tractor cabin. Sampling was undertaken for 4 hr. The results showed that, on average, Western Australian farmers were exposed to personal respirable dust concentrations above the Australian Institute of Occupational Hygienists recommended guideline values, with some farmers being exposed to concentrations up to seven times higher than the value for respirable dusts. In comparison, in-cabin dust concentrations were lower, although some individual tractors recorded intermittently higher levels, which might be attributed to the type of work activity or process being undertaken. Remaining in tractor cabins with closed doors and windows with properly maintained seals might minimize the infiltration of hazardous dusts and may provide some protection from dust exposures. Future research should focus on educating and providing farm owners and workers with more information on adopting work processes and procedures related to minimizing harmful exposures to agricultural dusts.


Assuntos
Poeira/análise , Fazendeiros , Exposição Ocupacional/análise , Adulto , Produção Agrícola/métodos , Humanos , Exposição por Inalação/análise , Pessoa de Meia-Idade , Veículos Automotores , Material Particulado/análise , Inquéritos e Questionários , Triticum , Austrália Ocidental
19.
Infect Immun ; 85(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28507068

RESUMO

Chronic airway infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. Although this bacterium has been extensively studied for its virulence determinants, biofilm growth, and immune evasion mechanisms, comparatively little is known about the nutrient sources that sustain its growth in vivo Respiratory mucins represent a potentially abundant bioavailable nutrient source, although we have recently shown that canonical pathogens inefficiently use these host glycoproteins as a growth substrate. However, given that P. aeruginosa, particularly in its biofilm mode of growth, is thought to grow slowly in vivo, the inefficient use of mucin glycoproteins may be relevant to its persistence within the CF airways. To this end, we used whole-genome fitness analysis, combining transposon mutagenesis with high-throughput sequencing, to identify genetic determinants required for P. aeruginosa growth using intact purified mucins as a sole carbon source. Our analysis reveals a biphasic growth phenotype, during which the glyoxylate pathway and amino acid biosynthetic machinery are required for mucin utilization. Secondary analyses confirmed the simultaneous liberation and consumption of acetate during mucin degradation and revealed a central role for the extracellular proteases LasB and AprA. Together, these studies describe a molecular basis for mucin-based nutrient acquisition by P. aeruginosa and reveal a host-pathogen dynamic that may contribute to its persistence within the CF airways.


Assuntos
Glioxilatos/metabolismo , Mucinas/metabolismo , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Acetatos/metabolismo , Aminoácidos/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Elementos de DNA Transponíveis/genética , Aptidão Genética , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Mucinas/isolamento & purificação , Mutagênese , Fenótipo , Pseudomonas aeruginosa/crescimento & desenvolvimento
20.
J Transl Med ; 14: 27, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818763

RESUMO

BACKGROUND: Craniomaxillofacial defects secondary to trauma, tumor resection, or congenital malformations are frequent unmet challenges, due to suboptimal alloplastic options and limited autologous tissues such as bone. Significant advances have been made in the application of adipose-derived stem/stromal cells (ASCs) in the pre-clinical and clinical settings as a cell source for tissue engineering approaches. To fully realize the translational potential of ASCs, the identification of optimal donors for ASCs will ensure the successful implementation of these cells for tissue engineering approaches. In the current study, the impact of obesity on the osteogenic differentiation of ASCs was investigated. METHODS: ASCs isolated from lean donors (body mass index <25; lnASCs) and obese donors (body mass index >30; obASCs) were induced with osteogenic differentiation medium as monolayers in an estrogen-depleted culture system and on three-dimensional scaffolds. Critical size calvarial defects were generated in male nude mice and treated with scaffolds implanted with lnASCs or obASCs. RESULTS: lnASCs demonstrated enhanced osteogenic differentiation in monolayer culture system, on three-dimensional scaffolds, and for the treatment of calvarial defects, whereas obASCs were unable to induce similar levels of osteogenic differentiation in vitro and in vivo. Gene expression analysis of lnASCs and obASCs during osteogenic differentiation demonstrated higher levels of osteogenic genes in lnASCs compared to obASCs. CONCLUSION: Collectively, these results indicate that obesity reduces the osteogenic differentiation capacity of ASCs such that they may have a limited suitability as a cell source for tissue engineering.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Obesidade/patologia , Osteogênese , Células-Tronco/citologia , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Colágeno/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Ácido Láctico/farmacologia , Camundongos Nus , Obesidade/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Crânio/patologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Magreza/genética , Magreza/patologia , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA