RESUMO
Nemaline myopathy (NM) is a genetic muscle disease, primarily caused by mutations in the NEB gene (NEB-NM) and with muscle myosin dysfunction as a major molecular pathogenic mechanism. Recently, we have observed that the myosin biochemical super-relaxed state was significantly impaired in NEB-NM, inducing an aberrant increase in ATP consumption and remodelling of the energy proteome in diseased muscle fibres. Because the small-molecule Mavacamten is known to promote the myosin super-relaxed state and reduce the ATP demand, we tested its potency in the context of NEB-NM. We first conducted in vitro experiments in isolated single myofibres from patients and found that Mavacamten successfully reversed the myosin ATP overconsumption. Following this, we assessed its short-term in vivo effects using the conditional nebulin knockout (cNeb KO) mouse model and subsequently performing global proteomics profiling in dissected soleus myofibres. After a 4 week treatment period, we observed a remodelling of a large number of proteins in both cNeb KO mice and their wild-type siblings. Nevertheless, these changes were not related to the energy proteome, indicating that short-term Mavacamten treatment is not sufficient to properly counterbalance the metabolically dysregulated proteome of cNeb KO mice. Taken together, our findings emphasize Mavacamten potency in vitro but challenge its short-term efficacy in vivo. KEY POINTS: No cure exists for nemaline myopathy, a type of genetic skeletal muscle disease mainly derived from mutations in genes encoding myofilament proteins. Applying Mavacamten, a small molecule directly targeting the myofilaments, to isolated membrane-permeabilized muscle fibres from human patients restored myosin energetic disturbances. Treating a mouse model of nemaline myopathy in vivo with Mavacamten for 4 weeks, remodelled the skeletal muscle fibre proteome without any noticeable effects on energetic proteins. Short-term Mavacamten treatment may not be sufficient to reverse the muscle phenotype in nemaline myopathy.
Assuntos
Proteínas Musculares , Músculo Esquelético , Miopatias da Nemalina , Proteoma , Animais , Miopatias da Nemalina/genética , Miopatias da Nemalina/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Camundongos , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Camundongos Knockout , Miosinas/metabolismo , Miosinas/genética , Feminino , Camundongos Endogâmicos C57BLRESUMO
Using deep phenotyping and high-throughput sequencing, we have identified a novel type of distal myopathy caused by mutations in the Small muscle protein X-linked (SMPX) gene. Four different missense mutations were identified in ten patients from nine families in five different countries, suggesting that this disease could be prevalent in other populations as well. Haplotype analysis of patients with similar ancestry revealed two different founder mutations in Southern Europe and France, indicating that the prevalence in these populations may be higher. In our study all patients presented with highly similar clinical features: adult-onset, usually distal more than proximal limb muscle weakness, slowly progressing over decades with preserved walking. Lower limb muscle imaging showed a characteristic pattern of muscle involvement and fatty degeneration. Histopathological and electron microscopic analysis of patient muscle biopsies revealed myopathic findings with rimmed vacuoles and the presence of sarcoplasmic inclusions, some with amyloid-like characteristics. In silico predictions and subsequent cell culture studies showed that the missense mutations increase aggregation propensity of the SMPX protein. In cell culture studies, overexpressed SMPX localized to stress granules and slowed down their clearance.
Assuntos
Miopatias Distais/patologia , Proteínas Musculares/genética , Músculo Esquelético/patologia , Mutação de Sentido Incorreto/genética , Adulto , Miopatias Distais/genética , Humanos , Corpos de Inclusão/patologia , Pessoa de Meia-Idade , Debilidade Muscular/patologia , Linhagem , Grânulos de EstresseRESUMO
Despite the expression of the mutated gene in all muscles, selective muscles are involved in genetic muscular dystrophies. Different muscular dystrophies show characteristic patterns of fatty degenerative changes by muscle imaging, even to the extent that the patterns have been used for diagnostic purposes. However, the underlying molecular mechanisms explaining the selective involvement of muscles are not known. To test the hypothesis that different muscles may express variable amounts of different isoforms of muscle genes, we applied a custom-designed exon microarray containing probes for 57 muscle-specific genes to assay the transcriptional profiles in sets of human adult lower limb skeletal muscles. Quantitative real-time PCR and whole transcriptome sequencing were used to further analyze the results. Our results demonstrate significant variations in isoform and gene expression levels in anatomically different muscles. Comparison of the known patterns of selective involvement of certain muscles in two autosomal dominant titinopathies and one autosomal dominant myosinopathy, with the isoform and gene expression results, shows a correlation between the specific muscles involved and significant differences in the level of expression of the affected gene and exons in these same muscles compared with some other selected muscles. Our results suggest that differential expression levels of muscle genes and isoforms are one determinant in the selectivity of muscle involvement in muscular dystrophies.
Assuntos
Expressão Gênica/genética , Distrofias Musculares/genética , Distrofias Musculares/patologia , Idoso , Idoso de 80 Anos ou mais , Éxons , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo RealRESUMO
BACKGROUND: Individually submitted prostatic needle biopsies are recommended by most guidelines because of their potential advantage in terms of core quality. However, unspecified bilateral biopsies are commonly submitted in many centers. The length of the core is the key quality indicator of prostate biopsies. Because there are few recent publications comparing the quality of 12 site-designated biopsies versus pooled biopsies, we compared the lengths of the biopsies obtained by both methods. METHODS: The material was obtained from 471 consecutive subjects who underwent prostatic needle biopsy in the Tampere University Hospital district between January and June 2013. Biopsies from 344 subjects fulfilled the inclusion criteria. The total number of cores obtained was 4047. The core lengths were measured on microscope slides. Extraprostatic tissue was subtracted from the core length. RESULTS: The aggregate lengths observed were 129.5 ± 21.8 mm (mean ± SD) for site-designated cores and 136.9 ± 26.4 mm for pooled cores (p = 0.09). The length of the core was 10.8 ± 1.8 mm for site-designated cores and 11.4 ± 2.2 mm for pooled cores (p = 0.87). The median length for pooled cores was 11 mm (range 5 mm - 18 mm). For individual site-designated cores, the median length was 11 mm (range 7 mm -15 mm). The core length was not correlated with the number of cores embedded into one paraffin block (r = 0.015). There was no significant difference in cancer detection rate (p = 0.62). CONCLUSIONS: Our results suggest that unspecified bilateral biopsies do not automatically lead to reduced core length. We conclude that carefully embedded multiple (three to nine) cores per block may yield cores of equal quality in a more cost-efficient way and that current guidelines favoring individually submitted cores may be too strict.
RESUMO
We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.
Assuntos
Doenças Musculares , Miopatias da Nemalina , Humanos , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Músculo Esquelético/patologia , Actinas/genética , Mutação , Doenças Musculares/genética , Aminoácidos/genética , Aminoácidos/metabolismoRESUMO
INTRODUCTION: Nebulin is a large actin-binding protein of the skeletal muscle sarcomere. Multiple isoforms of nebulin are produced from the 183-exon-containing nebulin gene (NEB). Mutations in NEB cause nemaline myopathy, distal myopathy, and core-rod myopathy. METHODS: Nebulin mRNA expression was assessed by microarrays and RT-PCR in 21 human leg muscle and 2 brain samples. Protein expression was assessed by immunohistochemistry in 5 regions of 1 brain sample. RESULTS: Nebulin isoform diversity is as high in brain as in skeletal muscle. Isoforms with more than 22 super repeats seem to be more common than previously anticipated. Immunohistochemistry showed nebulin expression predominantly in the cytoplasm of pyramidal neurons but also in the cytoplasm of mainly subcortical endothelial cells. CONCLUSIONS: Nebulin, as in skeletal muscle, may have a role as an actin filament stabilizer or length regulator in neurons of the human brain, although patients with NEB mutations usually have normal cognition.
Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Actinas/metabolismo , Adulto , Encéfalo/patologia , Encéfalo/fisiologia , Feto , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genéticaRESUMO
OBJECTIVES: Plasma hyaluronan and syndecan-1 levels represent shedding of the endothelium glycocalyx during ischemia and edema. Diazoxide, a K(ATP)-channel opener, has been shown to decrease myocardial edema during coronary artery bypass grafting (CABG). We evaluated whether diazoxide exerts an impact on plasma hyaluronan and syndecan-1 levels during CABG. DESIGN: Representative blood samples for hyaluronan and syndecan-1, before, during and after surgery, were obtained in 13 out of 16 patients that had a history of stable coronary artery disease undergoing CABG with or without diazoxide. Electron microscopy from biopsies procured from the right atrium in 9 patients was performed to confirm ultrastructural differences among patients before and during CABG. RESULTS: Ultrastructural differences were apparent between individual patients already before operation at base line reflecting differences in the severity of myocardial ischemia and edema. A significant decrease of hyaluronan and syndecan-1 values was observed in patients with diazoxide after surgery (p < 0.04). Significant correlation of plasma hyaluronan and syndecan-1 levels was observed in patients with diazoxide but not in controls (p < 0.005, Spearman rank rho). CONCLUSION: Diazoxide may have an impact on levels of peripheral plasma hyaluronan and syndecan-1 after CABG, suggesting decreased shedding of the endothelial glycocalyx layer.
Assuntos
Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Diazóxido/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Glicocálix/efeitos dos fármacos , Biomarcadores/sangue , Biópsia , Ponte de Artéria Coronária/efeitos adversos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Método Duplo-Cego , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Finlândia , Glicocálix/metabolismo , Glicocálix/ultraestrutura , Humanos , Ácido Hialurônico/sangue , Microscopia Eletrônica , Projetos Piloto , Estudos Prospectivos , Sindecana-1/sangue , Fatores de Tempo , Resultado do TratamentoRESUMO
OBJECTIVE: Inclusion body myositis (IBM) has an unclear molecular etiology exhibiting both characteristic inflammatory T-cell activity and rimmed-vacuolar degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM. METHODS: We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n = 24), tibial muscular dystrophy (n = 6), and histopathologically normal group (n = 9). In a comprehensive transcriptomics analysis, we analyzed the differential gene expression, differential splicing and exon usage, downstream pathway analysis, and the interplay between coding and non-coding RNAs (micro RNAs and long non-coding RNAs). RESULTS: We observe dysregulation of genes involved in calcium homeostasis, particularly affecting the T-cell activity and regulation, causing disturbed Ca2+-induced apoptotic pathways of T cells in IBM muscles. Additionally, LCK/p56, which is an essential gene in regulating the fate of T-cell apoptosis, shows increased expression and altered splicing usage in IBM muscles. INTERPRETATION: Our analysis provides a novel understanding of the molecular mechanisms in IBM by showing a detailed dysregulation of genes involved in calcium homeostasis and its effect on T-cell functioning in IBM muscles. Loss of T-cell regulation is hypothesized to be involved in the consistent observation of no response to immune therapies in IBM patients. Our results show that loss of apoptotic control of cytotoxic T cells could indeed be one component of their abnormal cytolytic activity in IBM muscles.
Assuntos
Miosite de Corpos de Inclusão , Miosite , Apoptose/genética , Cálcio/metabolismo , Homeostase/genética , Humanos , Músculo Esquelético/patologia , Miosite de Corpos de Inclusão/genética , Linfócitos T/patologia , TranscriptomaRESUMO
Nemaline myopathy (NM) is one of the most common non-dystrophic genetic muscle disorders. NM is often associated with mutations in the NEB gene. Even though the exact NEB-NM pathophysiological mechanisms remain unclear, histological analyses of patients' muscle biopsies often reveal unexplained accumulation of glycogen and abnormally shaped mitochondria. Hence, the aim of the present study was to define the exact molecular and cellular cascade of events that would lead to potential changes in muscle energetics in NEB-NM. For that, we applied a wide range of biophysical and cell biology assays on skeletal muscle fibres from NM patients as well as untargeted proteomics analyses on isolated myofibres from a muscle-specific nebulin-deficient mouse model. Unexpectedly, we found that the myosin stabilizing conformational state, known as super-relaxed state, was significantly impaired, inducing an increase in the energy (ATP) consumption of resting muscle fibres from NEB-NM patients when compared with controls or with other forms of genetic/rare, acquired NM. This destabilization of the myosin super-relaxed state had dynamic consequences as we observed a remodeling of the metabolic proteome in muscle fibres from nebulin-deficient mice. Altogether, our findings explain some of the hitherto obscure hallmarks of NM, including the appearance of abnormal energy proteins and suggest potential beneficial effects of drugs targeting myosin activity/conformations for NEB-NM.
Assuntos
Miopatias da Nemalina , Animais , Camundongos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Mutação/genética , Miopatias da Nemalina/genética , Miopatias da Nemalina/patologia , Miosinas/metabolismo , Proteoma/metabolismoAssuntos
Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/patologia , Proteínas Associadas à Matriz Nuclear/genética , Doenças Faríngeas/genética , Doenças Faríngeas/patologia , Proteínas de Ligação a RNA/genética , Disfunção da Prega Vocal/genética , Disfunção da Prega Vocal/patologia , Adulto , Idade de Início , Idoso , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença dos Neurônios Motores/complicações , Mutação/genética , Linhagem , Doenças Faríngeas/complicações , Fenótipo , Disfunção da Prega Vocal/complicaçõesRESUMO
BACKGROUND AND OBJECTIVES: To clinically, genetically, and histopathologically characterize patients presenting with an unusual combination of distal myopathy and facial weakness, without involvement of upper limb or shoulder girdle muscles. METHODS: Two families with a novel form of actininopathy were identified. Patients had been followed up over 10 years. Their molecular genetic diagnosis was not clear after extensive investigations, including analysis of candidate genes and FSHD1-related D4Z4 repeats. RESULTS: Patients shared a similar clinical phenotype and a common pattern of muscle involvement. They presented with a very slowly progressive myopathy involving anterior lower leg and facial muscles. Muscle MRI finding showed complete fat replacement of anterolateral compartment muscles of the lower legs with variable involvement of soleus and gastrocnemius but sparing thigh muscles. Muscle biopsy showed internalized nuclei, myofibrillar disorganization, and rimmed vacuoles. High-throughput sequencing identified in each proband a heterozygous single nucleotide deletion (c.2558del and c.2567del) in the last exon of the ACTN2 gene. The deletions are predicted to lead to a novel but unstructured slightly extended C-terminal amino acid sequence. DISCUSSION: Our findings indicate an unusual form of actininopathy with specific molecular and clinical features. Actininopathy should be considered in the differential diagnosis of distal myopathy combined with facial weakness.
RESUMO
The different histochemical ATPase properties of myosins separating the muscle fiber types have been utilized in diagnostic muscle biopsy routine for more than four decades. The ATPase staining method is rather laborious and has several disadvantages, such as weakening of staining over time and non-specific staining of capillaries, making the distinction of extremely atrophic muscle fibers difficult. We have developed a reliable and advanced immunohistochemical myosin double staining method for the identification of fiber types, including highly atrophic fibers in routine diagnostics. With this double staining method, we are able to distinguish among type I (ATPase type 1), IIA (ATPase type 2A), IIX (ATPase type 2B) and remodeled ATPase type 2C fibers expressing both fast and slow myosins using a one slide technique. Immunohistochemical double staining of myosin heavy chain isoforms can be used as an alternative for the conventional ATPase staining method in routine histopathology. The method provides even more detailed information of fast fiber subtypes and highly atrophic fibers on one single slide.
Assuntos
Adenosina Trifosfatases/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Distrofia Miotônica/metabolismo , Coloração e Rotulagem/métodos , Humanos , Imuno-Histoquímica , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Lenta/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Distrofia Miotônica/patologiaRESUMO
INTRODUCTION: Two families with autosomal dominant limb girdle muscular dystrophy (LGMD) have previously been linked to a locus on chromosome 7q36 10 years ago. The locus has been termed both LGMD1D and 1E, but because of lack of additional families to narrow down the linked region of interest, this disease has remained elusive. METHODS: A large Finnish family was clinically and genetically investigated. Laboratory parameters were determined, including creatine kinase (CK) value, neurographic and electromyography studies, cardiac and respiratory function examinations, muscle biopsies and muscle imaging by CT or MRI. RESULTS: Patients had onset of muscle weakness in the pelvic girdle between the fourth and sixth decades with an autosomal dominant pattern of inheritance. CK values were slightly elevated and electromyography was myopathic only. Muscle biopsies showed myopathic and/or dystrophic features with very minor rimmed vacuolation and protein aggregation findings. Molecular genetic analysis indicates linkage of the disease to the locus on chromosome 7q36 completely overlapping with the previously reported locus LGMD1D/E. DISCUSSION: Advancement towards the causative gene defect in the 7q36 linked disease needs new additional families to narrow the region of interest. The phenotype in the previously linked families has not been reported in full detail, which may be one reason for the shortage of additional families. A comprehensive clinical and morphological phenotype of chromosome 7q36 linked autosomal dominant LGMD with a restricted and updated 6.4 Mb sized haplotype is reported here.
Assuntos
Cromossomos Humanos Par 7/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Adulto , Idade de Início , Idoso , Creatina Quinase/sangue , Eletromiografia , Família , Feminino , Finlândia , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Linhagem , Tomografia Computadorizada por Raios X , Adulto JovemRESUMO
TRIM63 mutations have been described as a potential cause for cardiac and skeletal myopathy in only one family so far. We describe a new patient carrying the same homozygous TRIM63 nonsense mutation c.739 C>T p.Q247X, that was originally reported in two members of a Spanish family manifesting cardiac hypertrophy. One of these original patients also had an additional heterozygous mutation in TRIM54 and a much more severe phenotype also involving skeletal muscles, and a digenic inheritance was therefore suggested. Our case report confirms the role of TRIM63 as a new cardiac myopathy gene, although it is unclear whether the homozygous p.Q247X mutation alone is sufficient to cause an additional skeletal myopathy.
Assuntos
Cardiomegalia/genética , Códon sem Sentido , Proteínas Musculares/genética , Doenças Musculares/genética , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Diagnóstico Diferencial , Feminino , Homozigoto , Humanos , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , FenótipoRESUMO
Limb-girdle muscular dystrophies (LGMD) are genetic disorders characterized by weakness of predominantly proximal limb and trunk muscles due to progressive loss of muscle tissue. Collagen VI-related muscular dystrophies usually display more generalized muscle involvement combined with contractures and/or hyperlaxity of distal finger joints. LGMD-like phenotype of collagenopathy has only rarely been described and as reported is usually of childhood onset. We identified a Finnish family with COL6A2-related LGMD with autosomal dominant inheritance and very late onset at 40-60 years of age. Since the mutation was previously unreported, the pathognomonic findings on muscle MRI were the decisive clue for the correct diagnosis.
Assuntos
Colágeno Tipo VI/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico por imagem , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação/genética , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , LinhagemRESUMO
OBJECTIVE: To describe adult-onset limb-girdle-type muscular dystrophy caused by biallelic variants in the PYROXD1 gene, which has been recently linked to early-onset congenital myofibrillar myopathy. METHODS: Whole exome sequencing was performed for adult-onset neuromuscular disease patients with no molecular diagnosis. Patients with PYROXD1 variants underwent clinical characterization, lower limb muscle MRI, muscle biopsy and spirometry. A yeast complementation assay was used to determine the biochemical consequences of the genetic variants. RESULTS: We identified four patients with biallelic PYROXD1 variants. Three patients, who had symptom onset in their 20s or 30s, were homozygous for the previously described p.Asn155Ser. The fourth patient, with symptom onset at age 49, was compound heterozygous for p.Asn155Ser variant and previously unknown p.Tyr354Cys. All patients presented with a LGMD-type phenotype of symmetric muscle weakness and wasting. Symptoms started in proximal muscles of the lower limbs, and progressed slowly to involve also upper limbs in a proximal-predominant fashion. All patients remained ambulant past the age of 60. They had restrictive lung disease but no cardiac impairment. Muscle MRI showed strong involvement of anterolateral thigh muscles. Muscle biopsy displayed chronic myopathic changes. Yeast complementation assay demonstrated the p.Tyr354Cys mutation to impair PYROXD1 oxidoreductase ability. CONCLUSION: PYROXD1 variants can cause an adult-onset slowly progressive LGMD-type phenotype.
Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Oxirredutases/genética , Idoso , Feminino , Finlândia , Genes Recessivos , Humanos , Masculino , Distrofia Muscular do Cíngulo dos Membros/patologia , Linhagem , Sequenciamento do ExomaRESUMO
We report the first family with a dominantly inherited mutation of the nebulin gene (NEB). This â¼100â¯kb in-frame deletion encompasses NEB exons 14-89, causing distal nemaline/cap myopathy in a three-generation family. It is the largest deletion characterized in NEB hitherto. The mutated allele was shown to be expressed at the mRNA level and furthermore, for the first time, a deletion was shown to cause the production of a smaller mutant nebulin protein. Thus, we suggest that this novel mutant nebulin protein has a dominant-negative effect, explaining the first documented dominant inheritance of nebulin-caused myopathy. The index patient, a young man, was more severely affected than his mother and grandmother. His first symptom was foot drop at the age of three, followed by distal muscle atrophy, slight hypomimia, high-arched palate, and weakness of the neck and elbow flexors, hands, tibialis anterior and toe extensors. Muscle biopsies showed myopathic features with type 1 fibre predominance in the index patient and nemaline bodies and cap-like structures in biopsies from his mother and grandmother. The muscle biopsy findings constitute a further example of nemaline bodies and cap-like structures being part of the same spectrum of pathological changes.
Assuntos
Proteínas Musculares/genética , Músculo Esquelético/diagnóstico por imagem , Miopatias da Nemalina/genética , Adulto , Humanos , Masculino , Músculo Esquelético/patologia , Miopatias da Nemalina/diagnóstico , Miopatias da Nemalina/patologia , Linhagem , Deleção de Sequência , Tomografia Computadorizada por Raios XRESUMO
OBJECTIVE: To identify the genetic defect causing a distal calf myopathy with cores. METHODS: Families with a genetically undetermined calf-predominant myopathy underwent detailed clinical evaluation, including EMG/nerve conduction studies, muscle biopsy, laboratory investigations, and muscle MRI. Next-generation sequencing and targeted Sanger sequencing were used to identify the causative genetic defect in each family. RESULTS: A novel deletion-insertion mutation in ryanodine receptor 1 (RYR1) was found in the proband of the index family and segregated with the disease in 6 affected relatives. Subsequently, we found 2 more families with a similar calf-predominant myopathy segregating with unique RYR1-mutated alleles. All patients showed a very slowly progressive myopathy without episodes of malignant hyperthermia or rhabdomyolysis. Muscle biopsy showed cores or core-like changes in all families. CONCLUSIONS: Our findings expand the spectrum of RYR1-related disorders to include a calf-predominant myopathy with core pathology and autosomal dominant inheritance. Two families had unique and previously unreported RYR1 mutations, while affected persons in the third family carried 2 previously known mutations in the same dominant allele.
Assuntos
Miopatias Distais/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Idoso , Criança , Creatina Quinase/metabolismo , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Miopatias Distais/fisiopatologia , Feminino , Humanos , Mutação INDEL , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismoRESUMO
BACKGROUND: Mutations in the titin gene (TTN) cause a large spectrum of diseases affecting skeletal and/or cardiac muscle. TTN includes 363 coding exons, a repeated region with a high degree of complexity, isoform-specific elements, and metatranscript-only exons thought to be expressed only during fetal development. Although three main classes of isoforms have been described so far, alternative splicing events (ASEs) in different tissues or in different developmental and physiological states have been reported. METHODS: To achieve a comprehensive view of titin ASEs in adult human skeletal muscles, we performed a RNA-Sequencing experiment on 42 human biopsies collected from 12 anatomically different skeletal muscles of 11 individuals without any skeletal-muscle disorders. RESULTS: We confirmed that the skeletal muscle N2A isoforms are highly prevalent, but we found an elevated number of alternative splicing events, some at a very high level. These include previously unknown exon skipping events and alternative 5' and 3' splice sites. Our data suggests the partial inclusion in the TTN transcript of some metatranscript-only exons and the partial exclusion of canonical N2A exons. CONCLUSIONS: This study provides an extensive picture of the complex TTN splicing pattern in human adult skeletal muscle, which is crucial for a proper clinical interpretation of TTN variants.
Assuntos
Processamento Alternativo , Conectina/genética , Músculo Esquelético/metabolismo , Adulto , Éxons/genética , Humanos , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética , Análise de Sequência de RNA/métodosRESUMO
Several alternative techniques exist to reconstruct skull defects. The complication rate of the cranioplasty procedure is high and the search for optimal materials and techniques continues. To report long-term results of patients who have received a cranioplasty using autologous adipose-derived stem cells (ASCs) seeded on beta-tricalcium phosphate (betaTCP) granules. Between 10/2008 and 3/2010, five cranioplasties were performed (four females, one male; average age 62.0 years) using ASCs, betaTCP granules and titanium or resorbable meshes. The average defect size was 8.1 × 6.7 cm2 . Patients were followed both clinically and radiologically. The initial results were promising, with no serious complications. Nevertheless, in the long-term follow-up, three of the five patients were re-operated due to graft related problems. Two patients showed marked resorption of the graft, which led to revision surgery. One patient developed a late infection (7.3 years post-operative) that required revision surgery and removal of the graft. One patient had a successfully ossified graft, but was re-operated due to recurrence of the meningioma 2.2 years post-operatively. One patient had an uneventful clinical follow-up, and the cosmetic result is satisfactory, even though skull x-rays show hypodensity in the borders of the graft. Albeit no serious adverse events occurred, the 6-year follow-up results of the five cases are unsatisfactory. The clinical results are not superior to results achieved by conventional cranial repair methods. The use of stem cells in combination with betaTCP granules and supporting meshes in cranial defect reconstruction need to be studied further before continuing with clinical trials. Stem Cells Translational Medicine 2017;6:1576-1582.