Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 18(1): 132, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488800

RESUMO

BACKGROUND: Physical therapy treatments incorporating equine movement are recognized as an effective tool to treat functional mobility and balance in children with cerebral palsy (CP). To date, only a few studies examined kinematic outputs of the horses and children when mounted. In this pilot study, to better understand the effectiveness of this type of treatment, we examined the interaction between the horses and children with CP during physical therapy sessions where equine movement was utilized. METHODS: Four children with CP participated in eight physical therapy sessions incorporating hippotherapy as a treatment intervention. Functional mobility was assessed using the Timed Up Go or the 10 m Walk Test. Inertial measurement unit sensors, attached to children and horses, recorded movements and tracked acceleration, angular velocity, and body orientation. Correlation between vertical accelerations of children and horses were analyzed. In addition, peak frequencies of vertical accelerations of children and horses were compared. RESULTS: Functional tests modestly improved over time. The children's movements, (quantified in frequency and temporal domains) increasingly synchronized to the vertical movement of the horse's walk, demonstrated by reduced frequency errors and increased correlation. CONCLUSIONS: The findings suggest that as the sessions progressed, the participants appeared to become more familiar with the horse's movement. Since the horse's gait at a walk mimics the human gait this type of treatment may provide individuals with CP, who have abnormal gait patterns, an opportunity for their neuromuscular system to experience a typical gait pattern. The horse's movement at the walk are consistent, cyclical, rhythmical, reciprocal and multi-dimensional, all of which can facilitate motor learning. The increased synchronization between horse and the mounted participant suggests that physical therapy utilizing equine movement is a viable treatment tool to enhance functional mobility. This study may provide a useful baseline for future work. Trial registrationTexas A&M University Institutional Review Board. IRB2018-0064. Registered 8 March 2018. Link: https://rcb.tamu.edu/humans/irb and https://github.com/pilwonhur/HPOT.


Assuntos
Paralisia Cerebral , Terapia Assistida por Cavalos , Animais , Criança , Marcha , Cavalos , Humanos , Movimento , Modalidades de Fisioterapia , Projetos Piloto
2.
Am J Occup Ther ; 73(4): 7304205090p1-7304205090p10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318673

RESUMO

IMPORTANCE: Along with growth in telerehabilitation, a concurrent need has arisen for standardized methods of tele-evaluation. OBJECTIVE: To examine the feasibility of using the Kinect sensor in an objective, computerized clinical assessment of upper limb motor categories. DESIGN: We developed a computerized Mallet classification using the Kinect sensor. Accuracy of computer scoring was assessed on the basis of reference scores determined collaboratively by multiple evaluators from reviewing video recording of movements. In addition, using the reference score, we assessed the accuracy of the typical clinical procedure in which scores were determined immediately on the basis of visual observation. The accuracy of the computer scores was compared with that of the typical clinical procedure. SETTING: Research laboratory. PARTICIPANTS: Seven patients with stroke and 10 healthy adult participants. Healthy participants intentionally achieved predetermined scores. OUTCOMES AND MEASURES: Accuracy of the computer scores in comparison with accuracy of the typical clinical procedure (immediate visual assessment). RESULTS: The computerized assessment placed participants' upper limb movements in motor categories as accurately as did typical clinical procedures. CONCLUSIONS AND RELEVANCE: Computerized clinical assessment using the Kinect sensor promises to facilitate tele-evaluation and complement telehealth applications. WHAT THIS ARTICLE ADDS: Computerized clinical assessment can enable patients to conduct evaluations remotely in their homes without therapists present.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Telerreabilitação , Extremidade Superior/fisiopatologia , Adulto , Humanos , Movimento
3.
J Hand Ther ; 29(4): 465-473, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27769844

RESUMO

STUDY DESIGN: Repeated measures. INTRODUCTION: The Kinect (Microsoft, Redmond, WA) is widely used for telerehabilitation applications including rehabilitation games and assessment. PURPOSE OF THE STUDY: To determine effects of the Kinect location relative to a person on measurement accuracy of upper limb joint angles. METHODS: Kinect error was computed as difference in the upper limb joint range of motion (ROM) during target reaching motion, from the Kinect vs 3D Investigator Motion Capture System (NDI, Waterloo, Ontario, Canada), and compared across 9 Kinect locations. RESULTS: The ROM error was the least when the Kinect was elevated 45° in front of the subject, tilted toward the subject. This error was 54% less than the conventional location in front of a person without elevation and tilting. The ROM error was the largest when the Kinect was located 60° contralateral to the moving arm, at the shoulder height, facing the subject. The ROM error was the least for the shoulder elevation and largest for the wrist angle. DISCUSSION: Accuracy of the Kinect sensor for detecting upper limb joint ROM depends on its location relative to a person. CONCLUSION: This information facilitates implementation of Kinect-based upper limb rehabilitation applications with adequate accuracy. LEVEL OF EVIDENCE: 3b.


Assuntos
Artrometria Articular/instrumentação , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/fisiologia , Software , Adulto , Fenômenos Biomecânicos , Estudos de Coortes , Feminino , Humanos , Masculino , Ontário , Melhoria de Qualidade , Extremidade Superior/fisiopatologia , Adulto Jovem
4.
J Neuroeng Rehabil ; 10: 105, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24112371

RESUMO

BACKGROUND AND PURPOSE: Stroke rehabilitation does not often integrate both sensory and motor recovery. While subthreshold noise was shown to enhance sensory signal detection at the site of noise application, having a noise-generating device at the fingertip to enhance fingertip sensation and potentially enhance dexterity for stroke survivors is impractical, since the device would interfere with object manipulation. This study determined if remote application of subthreshold vibrotactile noise (away from the fingertips) improves fingertip tactile sensation with potential to enhance dexterity for stroke survivors. METHODS: Index finger and thumb pad sensation was measured for ten stroke survivors with fingertip sensory deficit using the Semmes-Weinstein Monofilament and Two-Point Discrimination Tests. Sensation scores were measured with noise applied at one of three intensities (40%, 60%, 80% of the sensory threshold) to one of four locations of the paretic upper extremity (dorsal hand proximal to the index finger knuckle, dorsal hand proximal to the thumb knuckle, dorsal wrist, volar wrist) in a random order, as well as without noise at beginning (Pre) and end (Post) of the testing session. RESULTS: Vibrotactile noise of all intensities and locations instantaneously and significantly improved Monofilament scores of the index fingertip and thumb tip (p < .01). No significant effect of the noise was seen for the Two-Point Discrimination Test scores. CONCLUSIONS: Remote application of subthreshold (imperceptible) vibrotactile noise at the wrist and dorsal hand instantaneously improved stroke survivors' light touch sensation, independent of noise location and intensity. Vibrotactile noise at the wrist and dorsal hand may have enhanced the fingertips' light touch sensation via stochastic resonance and interneuronal connections. While long-term benefits of noise in stroke patients warrants further investigation, this result demonstrates potential that a wearable device applying vibrotactile noise at the wrist could enhance sensation and grip ability without interfering with object manipulation in everyday tasks.


Assuntos
Dedos/fisiopatologia , Limiar Sensorial/fisiologia , Reabilitação do Acidente Vascular Cerebral , Percepção do Tato/fisiologia , Vibração/uso terapêutico , Idoso , Feminino , Dedos/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Sensação/fisiologia , Processos Estocásticos
5.
Exp Brain Res ; 221(3): 299-308, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791231

RESUMO

Terminating a voluntary muscle contraction is an important aspect of motor control, and yet, its neurophysiology is unclear. The objective of this study was to determine the role of short-interval intracortical inhibition (SICI) by comparing SICIs during relaxation from a power grip versus during a sustained power grip at the matching muscle activity level. Right-handed healthy young adults gripped and relaxed from power grip following auditory cues. The relaxation period was determined as the time for the flexor digitorum superficialis (FDS) muscle to reach its pre-contraction baseline level after the cue to relax. SICI during relaxation was obtained at different times into the relaxation period in two separate studies (70, 80, 90 % into relaxation in Study 1; 25, 50, 75 % into relaxation in Study 2). In addition, SICI during sustained contraction was assessed while subjects maintained a power grip at the matching FDS EMG levels (obtained during relaxation, for both Studies). Results showed that the mean SICI was greater during relaxation than during sustained contraction at the matching muscle activity level in both Studies (p < 0.05), indicating increased activation of intracortical inhibitory circuits for muscle relaxation. SICI gradually increased from 25 to 50 and 75 % into relaxation (Study 2, p < 0.05), but did not change from 70 to 80 and 90 % into relaxation (Study 1). MEP decreased with progression of relaxation (p < 0.05) in both Studies, reflecting gradual decreases in corticomotor excitability. This work supports the hypothesis that relaxation from a voluntary muscle contraction involves inhibitory activity in the primary motor cortex.


Assuntos
Força da Mão/fisiologia , Córtex Motor/fisiologia , Relaxamento Muscular/fisiologia , Músculo Esquelético/fisiologia , Inibição Neural/fisiologia , Adulto , Eletromiografia/métodos , Feminino , Humanos , Masculino , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
6.
IEEE Trans Haptics ; 15(1): 109-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061593

RESUMO

We propose a novel, gyroscopic device for haptics and hand rehabilitation, named Gymball. It consists of a fully actuated rotor-gimbal assembly encased in an easy-to-grip appealing design. When held, the device generates a gyroscopic torque which causes the user's hand to move about the wrist. Interviews with occupational therapists, simulations, and proof-of-concept models helped determine the design specifications of Gymball. Compared to the existing gyroscopic devices, Gymball has the following advantages. (i) A smaller form-factor with better user appeal while achieving 0.5 Nm torque. (ii) A wire entanglement-free design allowing complete rotations of the rotor-gimbal assembly. (iii) Negligible rotary imbalances owing to a symmetrical design, resulting in haptic signals with minimal vibratory noise. In this paper, we detail the design and analysis of the device. A feasibility study was conducted to validate prospect of using the device for haptic feedback or therapy. Specifically, the study focused on (i) whether the gyroscopic torque generated by the device can passively move the user's hand about the wrist and (ii) whether the produced hand motion can be controlled. The results show that Gymball can successfully generate about 7° of hand oscillations. The amplitude and frequency of the hand oscillations can be controlled using the speed of rotor and gimbal.


Assuntos
Mãos , Tecnologia Háptica , Desenho de Equipamento , Força da Mão , Humanos , Torque , Extremidade Superior
7.
Front Neurorobot ; 16: 807826, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431853

RESUMO

Human gait phase estimation has been studied in the field of robotics due to its importance for controlling wearable devices (e.g., prostheses or exoskeletons) in a synchronized manner with the user. As data-driven approaches have recently risen in the field, researchers have attempted to estimate the user gait phase using a learning-based method. Thigh and torso information have been widely utilized in estimating the human gait phase for wearable devices. Torso information, however, is known to have high variability, specifically in slow walking, and its effect on gait phase estimation has not been studied. In this study, we quantified torso variability and investigated how the torso information affects the gait phase estimation result at various walking speeds. We obtained three different trained models (i.e., general, slow, and normal-fast models) using long short-term memory (LSTM). These models were compared to identify the effect of torso information at different walking speeds. In addition, the ablation study was performed to identify the isolated effect of the torso on the gait phase estimation. As a result, when the torso segment's angular velocity was used with thigh information, the accuracy of gait phase estimation was increased, while the torso segment's angular position had no apparent effect on the accuracy. This study suggests that the torso segment's angular velocity enhances human gait phase estimation when used together with the thigh information despite its known variability.

8.
Front Neurorobot ; 16: 790070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35706552

RESUMO

State-of-the-art knee braces use a polycentric mechanism with a predefined locus of the instantaneous center of rotation (centrode) and most exoskeleton devices use a knee mechanism with a single axis of rotation. However, human knees do not share a common centrode nor do they have a single axis. This leads to misalignment between the assistive device's joint axis and the user's knee axis, resulting in device migration and interaction forces, which can lead to sores, pain, and abandonment of the device over time. There has been some research into self-aligning knee mechanisms; however, there is a lack of consensus on the benefit of these mechanisms. There is no research that looked purely at the impact of the knee mechanisms, either. In this article, we compare three different knee brace mechanisms: single axis (SA), polycentric with predefined centrode (PPC), and polycentric with a self-aligning center of rotation (PSC). We designed and conducted an experiment to evaluate different joint mechanisms on device migration and interaction forces. Brace material, weight, size, cuff design, fitment location, and tightness were consistent across trials, making the knee joint mechanism the sole variable. The brace mechanisms had no significant effect on walking kinematics or kinetics. However, the PPC brace had greater interaction forces on the top brace strap than the SA and PSC. The PSC and SA had significantly lower interaction forces on the bottom strap compared to the PPC brace. The PSC had significantly less migration than both the SA and PPC braces. These results show that a PPC mechanism may not be beneficial for a wide range of users. This also shows that the PSC mechanisms may improve mechanism alignment and lessen device migration.

9.
Front Neurorobot ; 16: 809380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370592

RESUMO

Transfemoral amputees are currently forced to utilize energetically passive prostheses that provide little to no propulsive work. Among the several joints and muscles required for healthy walking, the ones most vital for push-off assistance include the knee, ankle, and metatarsophalangeal (MTP) joints. There are only a handful of powered knee-ankle prostheses (also called powered transfemoral prostheses) in literature and few of them comprise a toe-joint. However, no one has researched the impact of toe-joint stiffness on walking with a power transfemoral prosthesis. This study is aimed at filling this gap in knowledge. We conducted a study with an amputee and a powered transfemoral prosthesis consisting of a spring loaded toe-joint. The prosthesis's toe-joint stiffness was varied between three values: 0.83 Nm/deg, 1.25 Nm/deg, and infinite (rigid). This study found that 0.83 Nm/deg stiffness reduced push-off assistance and resulted in compensatory movements that could lead to issues over time. While the joint angles and moments did not considerably vary across 1.25 Nm/deg and rigid stiffness, the latter led to greater power generation on the prosthesis side. However, the 1.25 Nm/deg joint stiffness resulted in the least power production from the intact side. We, thus, concluded that the use of a stiff toe-joint with a powered transfemoral prosthesis can reduce the cost of transport of the intact limb.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37015549

RESUMO

Human gait phase estimation has been studied in the field of robotics due to its importance in controlling wearable devices (e.g., robotic prostheses or exoskeletons) in a synchronized manner with the user. Researchers have attempted to estimate the user's gait phase using a learning-based method, as data-driven approaches have recently emerged in the field. In this study, we propose a new labeling method (i.e., a piecewise linear label) to have the estimator learn the ground truth based on variable toe-off onset at different walking speeds. Using whole-body marker data, we computed the angular positions and velocities of thigh and torso segments and utilized them as input data for model training. Three models (i.e., general, slow, and normal-fast) were obtained based on long short-term memory (LSTM). These models are compared in order to identify the effect of the piecewise linear label at various walking speeds. As a result, when the proposed labeling method was used while training the general model, the estimation accuracy was significantly improved. This fact was also found when estimating the user's gait phase during the mid-stance phase. Furthermore, the proposed method maintained good performance in detecting the heel-strike and toe-off. According to the findings of this study, the newly proposed labeling method could improve speed-adaptability in gait phase estimation, resulting in outstanding accuracy for both gait phase, heel-strike, and toe-off estimation.

11.
Artigo em Inglês | MEDLINE | ID: mdl-34283718

RESUMO

User gait phase estimation plays a key role for the seamless control of the lower-limb robotic assistive devices (e.g., exoskeletons or prostheses) during ambulation. To achieve this, several studies have attempted to estimate the gait phase using a thigh or shank angle. However, their estimation resulted in some deviation from the actual walking and varied across the walking speeds. In this study, we investigated the different setups using for the machine learning approach to obtain more accurate and consistent gait phase estimation for the robotic transfemoral prosthesis over different walking speeds. Considering the transfemoral prosthetic application, we proposed two different sensor setups: i) the angular positions and velocities of both thigh and torso (S1) and ii) the angular positions and velocities of both thigh and torso, and heel force data (S2). The proposed setups and method are experimentally evaluated with three healthy young subjects at four different walking speeds: 0.5, 1.0, 1.5, and 2.0 m/s. Both results showed robust and accurate gait phase estimation with respect to the ground truth (loss value of S1: 4.54e-03 Vs. S2: 4.70e-03). S1 had the advantage of a simple equipment setup using only two IMUs, while S2 had the advantage of estimating more accurate heel-strikes than S1 by using additional heel force data. The choice between the two sensor setups can depend on the researchers' preference in consideration of the device setup or the focus of the interest.


Assuntos
Membros Artificiais , Procedimentos Cirúrgicos Robóticos , Fenômenos Biomecânicos , Marcha , Humanos , Caminhada , Velocidade de Caminhada
12.
Front Neurorobot ; 15: 790060, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087389

RESUMO

User customization of a lower-limb powered Prosthesis controller remains a challenge to this date. Controllers adopting impedance control strategies mandate tedious tuning for every joint, terrain condition, and user. Moreover, no relationship is known to exist between the joint control parameters and the slope condition. We present a control framework composed of impedance control and trajectory tracking, with the transitioning between the two strategies facilitated by Bezier curves. The impedance (stiffness and damping) functions vary as polynomials during the stance phase for both the knee and ankle. These functions were derived through least squares optimization with healthy human sloped walking data. The functions derived for each slope condition were simplified using principal component analysis. The weights of the resulting basis functions were found to obey monotonic trends within upslope and downslope walking, proving the existence of a relationship between the joint parameter functions and the slope angle. Using these trends, one can now design a controller for any given slope angle. Amputee and able-bodied walking trials with a powered transfemoral prosthesis revealed the controller to generate a healthy human gait. The observed kinematic and kinetic trends with the slope angle were similar to those found in healthy walking.

13.
Sci Rep ; 11(1): 19780, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611178

RESUMO

Toe joint is known as one of the critical factors in designing a prosthetic foot due to its nonlinear stiffness characteristic. This stiffness characteristic provides a general feeling of springiness in the toe-off and it also affects the ankle kinetics. In this study, the toe part of the prosthetic foot was designed to improve walking performance. The toe joint was implemented as a single part suitable for 3D printing. The various shape factors such as curved shape, bending space, auxetic structure, and bending zone were applied to mimic human foot characteristics. The finite element analysis (FEA) was conducted to simulate terminal stance (from heel-off to toe-off) using the designed prosthetic foot. To find the structure with characteristics similar to the human foot, the optimization was performed based on the toe joint geometries. As a result, the optimized foot showed good agreement with human foot behavior in the toe torque-angle curve. Finally, the simulation conditions were validated by comparing with human walking data and it was confirmed that the designed prosthetic foot structure can implement the human foot function.


Assuntos
Fenômenos Biomecânicos , Análise de Elementos Finitos , , Impressão Tridimensional , Próteses e Implantes , Desenho de Prótese , Articulação do Dedo do Pé , Simulação por Computador , Humanos
14.
Ergonomics ; 53(7): 882-91, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20582769

RESUMO

The air bottle configuration (mass and size) used with a firefighter's self-contained breathing apparatus may affect functional gait performance and slip/trip/fall risk, contributing to one of the most common and costly fire ground injuries to this population. To examine the potential effect of bottle mass and size on firefighter gait performance, four 30-min air bottle configurations were tested. To quantify biomechanical gait performance, kinetic and kinematic gait data were collected on 24 male firefighters while walking at normal and fast speeds during three conditions (no obstacle, 10 cm or 30 cm stationary obstacle). Bottle mass, obstacle height and walking speed - but not bottle size - were found to significantly impact gait parameters. Ten subjects (42%) contacted the taller obstacle while wearing heavier bottles, suggesting greater risk for tripping. Heavier bottles also resulted in larger forces by the trailing leg in both the anterior-posterior and vertical directions, suggesting greater risk for slipping. These results suggest that increased bottle weight may result in a decrease in gait performance and an increase in fall risk. STATEMENT OF RELEVANCE: Occupations, such as firefighting, often require use of a self-contained breathing apparatus that includes a pressurised air bottle. No systematic assessment has investigated how modest changes in load carriage due to bottle configuration (mass and size) might affect gait behaviour, especially when crossing obstacles. Bottle mass, but not size, was found to decrease gait performance and increase fall risk.


Assuntos
Incêndios , Marcha/fisiologia , Postura , Caminhada/fisiologia , Acidentes por Quedas/prevenção & controle , Acidentes de Trabalho , Adulto , Análise de Variância , Fenômenos Biomecânicos , Humanos , Masculino , Análise Multivariada , Fatores de Risco , Análise e Desempenho de Tarefas , Suporte de Carga
15.
PLoS One ; 15(3): e0230019, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32163463

RESUMO

Falls cause negative impacts on society and the economy. Slipping is a common initiating event for falling. Yet, individuals differ in their ability to recover from slips. Persons experiencing mild slips can accommodate the perturbation without falling, whereas severe slipping is associated with inadequate or slow pre- or post-slip control that make these individuals more prone to fall. Knowing the discrepancies between mild and severe slippers in kinematic and kinetic variables improves understanding of adverse control responsible for severe slipping. This study examined differences across these participants with respect to center of mass (COM) height, sagittal angular momentum (H), upper body kinematics, and the duration of single/double phase. Possible causality of such relationships was also studied by observing the time-lead of the deviations. Twenty healthy young adults performed walking trials in dry and slippery conditions. They were classified into mild and severe slippers based on their heel slipping speed. No inter-group differences were observed in the upper extremity kinematics. It was found that mild and severe slippers do not differ in the studied variables during normal gait; however, they do show significant differences through slipping. Compared to mild slippers, sever slippers lowered their COM height following a slip, presented higher H, and shortened their single support phase (p-value<0.05 for all). Based on the time-lead observed in H over all other variables suggests that failure to control angular momentum may influence slip severity.


Assuntos
Acidentes por Quedas/prevenção & controle , Caminhada , Adulto , Fenômenos Biomecânicos , Feminino , Pé/fisiologia , Marcha , Humanos , Masculino , Ombro/fisiologia , Adulto Jovem
16.
Sci Rep ; 9(1): 16870, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727928

RESUMO

Human upright standing involves an integration of multiple sensory inputs such as vision, vestibular and somatosensory systems. It has been known that sensory deficits worsen the standing balance. However, how the modulation of sensory information contributes to postural stabilization still remains an open question for researchers. The purpose of this work was to formulate the human standing postural control system in the framework of the free-energy principle, and to investigate the efficacy of the skin stretch feedback in enhancing the human standing balance. Previously, we have shown that sensory augmentation by skin stretch feedback at the fingertip could modulate the standing balance of the people with simulated sensory deficits. In this study, subjects underwent ten 30-second trials of quiet standing balance with and without skin stretch feedback. Visual and vestibular sensory deficits were simulated by having each subject close their eyes and tilt their head back. We found that sensory augmentation by velocity-based skin stretch feedback at the fingertip reduced the entropy of the standing postural sway of the people with simulated sensory deficits. This result aligns with the framework of the free energy principle which states that a self-organizing biological system at its equilibrium state tries to minimize its free energy either by updating the internal state or by correcting body movement with appropriate actions. The velocity-based skin stretch feedback at the fingertip may increase the signal-to-noise ratio of the sensory signals, which in turn enhances the accuracy of the internal states in the central nervous system. With more accurate internal states, the human postural control system can further adjust the standing posture to minimize the entropy, and thus the free energy.


Assuntos
Retroalimentação Fisiológica , Equilíbrio Postural/fisiologia , Percepção Espacial/fisiologia , Vestíbulo do Labirinto/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adulto , Fenômenos Biomecânicos , Entropia , Feminino , Dedos/inervação , Dedos/fisiologia , Sensação Gravitacional/fisiologia , Humanos , Masculino , Postura/fisiologia , Pele/inervação
17.
Front Hum Neurosci ; 13: 383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31787887

RESUMO

Slipping is frequently responsible for falling injuries. Preventing slips, and more importantly severe slips, is of importance in fall prevention. Our previous study characterized mild slipping and severe slipping by the analysis of muscle synergies. Significant discrepancies in motor control of slipping have been observed between mild and severe slippers. We are further interested in whether differences exist in baseline motor control patterns between persons who experience mild and severe slips when exposed to a slippery contaminant. This study investigated walking with a muscle synergy approach to detect if walking muscle synergies differ between groups experiencing different slip severities. Twenty healthy young adults (eight mild slippers and 12 severe slippers) participated in this study and their muscle synergies of walking were extracted. Muscle synergy analysis showed that mild slippers had a higher contribution of hamstring and quadriceps during walking while severe slippers had increased contribution of the tibialis group. This study provides novel information that may contribute to identifying diagnostic techniques for identifying persons or populations with a high risk of fall based on their walking patterns.

19.
Front Hum Neurosci ; 11: 536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163111

RESUMO

Falls impose significant negative impacts to the US population and economy. A significant number of falls may be prevented via appropriate slip-responses since a strong relation exists between slips and falls. More importantly, as severe slips are more prone to result in a fall, identifying severe slippers along with the responsible factors for their adverse motor control and severe slipping should be the highest priority in fall prevention process. Previous studies have suggested that muscle synergies may be building blocks of the central nervous system in controlling motor tasks. Muscle synergies observed during slipping ('post-slip-initiation synergies' or 'just briefly,' 'slipping muscle synergies'), may represent the fundamental blocks of the neural control during slipping. Hence, studying the differences in slipping muscle synergies of mild and severe slippers can potentially reveal the differences in their neural control and subsequently, indicate the responsible factors for the adverse post-slip response in severe slippers. Even though the slipping muscle synergies have been investigated before, it still remains unclear on how the slip severity is associated with the slipping muscle synergies. More importantly, muscle synergies can be interpreted not only as neural blocks but also as physical sub-tasks of the main motor task. Hence, studying the differences of slipping synergies of mild and severe slippers would reveal the discrepancies in sub-tasks of their post-slip response. These discrepancies help pinpoint the malfunctioning sub-function associated with inadequate motor response seen in severe slippers. Twenty healthy subjects were recruited and underwent an unexpected slip (to extract their slipping synergies). Subjects were classified into mild and severe slippers based on their Peak Heel Speed. An independent t-test revealed several significant inter-group differences for muscle synergies of mild and severe slippers indicating differences in their neural control of slipping. A forward dynamic simulation was utilized to reveal the functionality of each synergy. Decomposition of slipping into sub-tasks (synergies), and finding the malfunctioning sub-task in severe slippers is important as it results in a novel targeted motor-rehabilitation technique that only aims to re-establish the impaired sub-task responsible for the adverse motor-response in severe slippers.

20.
Front Neurorobot ; 11: 31, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690514

RESUMO

Cutaneous sensory feedback can be used to provide additional sensory cues to a person performing a motor task where vision is a dominant feedback signal. A haptic joystick has been widely used to guide a user by providing force feedback. However, the benefit of providing force feedback is still debatable due to performance dependency on factors such as the user's skill-level, task difficulty. Meanwhile, recent studies have shown the feasibility of improving a motor task performance by providing skin-stretch feedback. Therefore, a combination of two aforementioned feedback types is deemed to be promising to promote synergistic effects to consistently improve the person's motor performance. In this study, we aimed at identifying the effect of the combined haptic and skin-stretch feedbacks on the aged person's driving motor performance. For the experiment, 15 healthy elderly subjects (age 72.8 ± 6.6 years) were recruited and were instructed to drive a virtual power-wheelchair through four different courses with obstacles. Four augmented sensory feedback conditions were tested: no feedback, force feedback, skin-stretch feedback, and a combination of both force and skin-stretch feedbacks. While the haptic force was provided to the hand by the joystick, the skin-stretch was provided to the steering forearm by a custom-designed wearable skin-stretch device. We tested two hypotheses: (i) an elderly individual's motor control would benefit from receiving information about a desired trajectory from multiple sensory feedback sources, and (ii) the benefit does not depend on task difficulty. Various metrics related to skills and safety were used to evaluate the control performance. Repeated measure ANOVA was performed for those metrics with two factors: task scenario and the type of the augmented sensory feedback. The results revealed that elderly subjects' control performance significantly improved when the combined feedback of both haptic force and skin-stretch feedback was applied. The proposed approach suggest the feasibility to improve people's task performance by the synergistic effects of multiple augmented sensory feedback modalities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA