Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Photosynth Res ; 160(2-3): 111-124, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700726

RESUMO

Accurate estimation of photosynthetic parameters is essential for understanding plant physiological limitations and responses to environmental factors from the leaf to the global scale. Gas exchange is a useful tool to measure responses of net CO2 assimilation (A) to internal CO2 concentration (Ci), a necessary step in estimating photosynthetic parameters including the maximum rate of carboxylation (Vcmax) and the electron transport rate (Jmax). However, species and environmental conditions of low stomatal conductance (gsw) reduce the signal-to-noise ratio of gas exchange, challenging estimations of Ci. Previous works showed that not considering cuticular conductance to water (gcw) can lead to significant errors in estimating Ci, because it has a different effect on total conductance to CO2 (gtc) than does gsw. Here we present a systematic assessment of the need for incorporating gcw into Ci estimates. In this study we modeled the effect of gcw and of instrumental noise and quantified these effects on photosynthetic parameters in the cases of four species with varying gsw and gcw, measured using steady-state and constant ramping techniques, like the rapid A/Ci response method. We show that not accounting for gcw quantitatively influences Ci and the resulting Vcmax and Jmax, particularly when gcw exceeds 7% of the total conductance to water. The influence of gcw was not limited to low gsw species, highlighting the importance of species-specific knowledge before assessing A/Ci curves. Furthermore, at low gsw instrumental noise can affect Ci estimation, but the effect of instrumental noise can be minimized using constant-ramping rather than steady-state techniques. By incorporating these considerations, more precise measurements and interpretations of photosynthetic parameters can be obtained in a broader range of species and environmental conditions.


Assuntos
Fotossíntese , Estômatos de Plantas , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Dióxido de Carbono/metabolismo , Água/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo
2.
Physiol Plant ; 176(3): e14304, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686664

RESUMO

Source-sink balance in plants determines carbon distribution, and altering it can impact carbon fixation, transport, and allocation. We aimed to investigate the effect of altered source-sink ratios on carbon fixation, transport, and distribution in 'Valencia' sweet orange (Citrus x sinensis) by various defoliation treatments (0%, 33%, 66%, and 83% leaf removal). Gas exchange parameters were measured on 0 and 10 days after defoliation using A/Ci response curves, and leaf export was measured two days after defoliation using radioisotope tracer techniques. Greater defoliation increased the maximum rate of carboxylation (Vcmax), electron transport rate (J1200), and triose-phosphate utilization rate (TPU). Leaf export was unaffected by defoliation but increased in leaves closer to the shoot apex. Basipetal translocation velocity in the trunk remained unaltered, indicating that more photosynthates remained in the shoot rather than being transported directly to the root sink. Defoliated plants initiated more new flush shoots but accumulated less shoot biomass per plant after 8 weeks. Carbon allocation to fine roots was smaller in defoliated plants, suggesting defoliation led to retention of carbohydrates in aboveground organs such as the trunk and other shoots from previous growing cycles. In conclusion, the low source-sink ratio increased carbon fixation without impacting individual leaf export in citrus. The results suggest that intermediate sinks such as the aboveground perennial organs play a role in mediating the translocation velocity. Further research is necessary to better understand the dynamics of source-sink regulation in citrus trees.


Assuntos
Carbono , Citrus , Fotossíntese , Folhas de Planta , Folhas de Planta/metabolismo , Carbono/metabolismo , Fotossíntese/fisiologia , Citrus/metabolismo , Citrus/fisiologia , Citrus/crescimento & desenvolvimento , Ciclo do Carbono , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Biomassa , Árvores/metabolismo , Árvores/fisiologia , Citrus sinensis/metabolismo , Citrus sinensis/crescimento & desenvolvimento , Citrus sinensis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA