Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 301: 113820, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583281

RESUMO

Soil salinization is a widespread problem affecting global food production. Phytoremediation is emerging as a viable and cost-effective technology to reclaim salt-affected soil. However, its efficiency is not clear due to the uncertainty of plant responses in saline soils. The main objective of this paper is to propose a phytoremediation dynamic model (PDM) for salt-affected soil within the process-based biogeochemical denitrification-decomposition (DNDC) model. The PDM represents two salinity processes of phytoremediation: plant salt uptake and salt-affected biomass growth. The salt-soil-plant interaction is simulated as a coupled mass balance equation of water and salt plant uptake. The salt extraction ability by plant is a combination of salt uptake efficiency (F) and transpiration rate. For water filled pore space (WFPS), the statistical measures RMSE, MAE, and R2 during the calibration period are 2.57, 2.14, and 0.49, and they are 2.67, 2.34, and 0.56 during the validation period, respectively. For soil salinity, RMSE, MAE, and R2 during the calibration period are 0.02, 0.02, and 0.92, and 0.06, 0.04, and 0.68 during the validation period, respectively, which are reasonably good for further scenario analysis. Over the four years, cumulative salt uptake varied based on weather conditions. At the optimal salt uptake efficiency (F = 20), cumulative salt uptake from soil was 16-90% for alfalfa, 11-70% for barley, and 10-80% for spring wheat. While at the lowest salt uptake efficiency (F = 40), cumulative salt uptake was nearly zero for all crops. Although barley has the highest peak transpiration flux, alfalfa and spring wheat have greater cumulative salt uptake because their peak transpiration fluxes occurred more frequently than in barley. For salt-tolerant crops biomass growth depends on their threshold soil salinity which determines their ability to take up salt without affecting biomass growth. In order to phytoremediate salt-affected soil, salt-tolerant crops having longer duration of crop physiological stages should be used, but their phytoremediation effectiveness will depend on weather conditions and the soil environment.


Assuntos
Salinidade , Solo , Biodegradação Ambiental , Produtos Agrícolas , Desnitrificação , Água
2.
J Environ Manage ; 280: 111678, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33298392

RESUMO

Soil salinity restricts plant growth, affects soil water balance and nitrous oxide (N2O) fluxes and can contaminate surface and groundwater. In this study, the Denitrification Decomposition (DNDC) model was modified to couple salt and water balance equations (SALT-DNDC) to investigate the effect of salinity on water balance and N2O fluxes. The model was examined against four growing seasons (2008-11) of observed data from Lethbridge, Alberta, Canada. Then, the model was used to simulate water filled pore space (WFPS), salt concentration and the N2O flux from agricultural soils. The results show that the effects of salinity on WFPS vary in different soil layers. Within shallow soil layers (<20 cm from soil surface) the salt concentration does not affect the average WFPS when initial salt concentrations range from 5 to 20 dS/m. However, in deeper soil layers (>20 cm from soil surface), when the initial salt concentration ranges from 5 to 20 dS/m it could indirectly affect the average WFPS due to changes of osmotic potential and transpiration. When AW is greater than 40%, the average growing season N2O emissions increase to a range of 0.6-1.0 g-N/ha/d at initial salt concentrations (5-20 dS/m) from a range of 0.5-0.7 g-N/ha/d when the salt concentrations is 0 dS/m. The newly developed SALT-DNDC model provides a unique tool to help investigate interactive effects among salt, soil, water, vegetation, and weather conditions on N2O fluxes.


Assuntos
Óxido Nitroso , Solo , Agricultura , Alberta , Óxido Nitroso/análise , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA