Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 589(7841): 281-286, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33176333

RESUMO

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Assuntos
Linhagem da Célula , Fibrose/patologia , Túbulos Renais/patologia , Miofibroblastos/patologia , Insuficiência Renal Crônica/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Mesoderma/citologia , Mesoderma/patologia , Camundongos , Miofibroblastos/metabolismo , Pericitos/citologia , Pericitos/patologia , RNA-Seq , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Análise de Célula Única , Transcriptoma
2.
PLoS Genet ; 19(11): e1011043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033156

RESUMO

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Mutação , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Linhagem Celular , DNA/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Citosina/metabolismo
3.
J Comput Chem ; 45(10): 663-670, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38088485

RESUMO

The oxazaphosphorine cyclophosphamide (CP) is a DNA-alkylating agent commonly used in cancer chemotherapy. This anticancer agent is administered as a prodrug activated by a liver cytochrome P450-catalyzed 4-hydroxylation reaction that yields the active, cytotoxic metabolite. The primary metabolite, 4-hydroxycyclophosphamide, equilibrates with the ring-open aldophosphamide that undergoes ß-elimination to yield the therapeutically active DNA cross-linking phosphoramide mustard and the byproduct acrolein. The present paper presents a DFT investigation of the different metabolic phases and an insight into the mechanism by which CP exerts its cytotoxic action. A detailed computational analysis of the energy profiles describing all the involved transformations and the mechanism of DNA alkylation is given with the aim to contribute to an increase of knowledge that, after more than 60 years of unsuccessful attempts, can lead to the design and development of a new generation of oxazaphosphorines.


Assuntos
Acroleína , DNA , Ciclofosfamida/farmacologia , Hidroxilação
4.
Bioinformatics ; 39(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261846

RESUMO

SUMMARY: Multimodal single-cell sequencing data provide detailed views into the molecular biology of cells. To allow for interactive analyses of such rich data and to readily derive insights from it, new analysis solutions are required. In this work, we present Cellenium, our new scalable visual analytics web application that enables users to semantically integrate and organize all their single-cell RNA-, ATAC-, and CITE-sequencing studies. Users can then find relevant studies and analyze single-cell data within and across studies. An interactive cell annotation feature allows for adding user-defined cell types. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are freely available under an MIT license and are available on GitHub (https://github.com/Bayer-Group/cellenium). The server backend is implemented in PostgreSQL, Python 3, and GraphQL, the frontend is written in ReactJS, TypeScript, and Mantine css, and plots are generated using plotlyjs, seaborn, vega-lite, and nivo.rocks. The application is dockerized and can be deployed and orchestrated on a standard workstation via docker-compose.


Assuntos
Aplicativos Móveis , Software , Documentação
5.
Cardiovasc Diabetol ; 23(1): 104, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504284

RESUMO

The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Insuficiência Cardíaca , Insuficiência Renal Crônica , Humanos , Insuficiência Cardíaca/complicações , Automonitorização da Glicemia , Volume Sistólico , Glicemia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Obesidade/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Diabetes Mellitus/tratamento farmacológico , Rim , Diabetes Mellitus Tipo 2/tratamento farmacológico
6.
Diabetes Metab Res Rev ; 40(3): e3755, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115715

RESUMO

In the primary care setting providers have more tools available than ever before to impact positively obesity, diabetes, and their complications, such as renal and cardiac diseases. It is important to recognise what is available for treatment taking into account diabetes heterogeneity. For those who develop type 2 diabetes (T2DM), effective treatments are available that for the first time have shown a benefit in reducing mortality and macrovascular complications, in addition to the well-established benefits of glucose control in reducing microvascular complications. Some of the newer medications for treating hyperglycaemia have also a positive impact in reducing heart failure (HF). Technological advances have also contributed to improving the quality of care in patients with diabetes. The use of technology, such as continuous glucose monitoring systems (CGM), has improved significantly glucose and glycated haemoglobin A1c (HbA1c) values, while limiting the frequency of hypoglycaemia. Other technological support derives from the use of predictive algorithms that need to be refined to help predict those subjects who are at great risk of developing the disease and/or its complications, or who may require care by other specialists. In this review we also provide recommendations for the optimal use of the new medications; sodium-glucose co-transporter-2 inhibitors (SGLT2i) and Glucagon-like peptide-receptor agonists 1 (GLP1RA) in the primary care setting considering the relevance of these drugs for the management of T2DM also in its early stage.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Cardiopatias , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/uso terapêutico , Automonitorização da Glicemia , Glicemia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Cardiopatias/complicações , Cardiopatias/tratamento farmacológico , Atenção Primária à Saúde , Receptor do Peptídeo Semelhante ao Glucagon 1 , Doenças Cardiovasculares/complicações
7.
Chem Biodivers ; : e202401152, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771298

RESUMO

A chemical investigation of a methanol extract derived from a solid-state rice culture of the nematode-cyst associated fungus Laburnicola nematophila K01 led to the isolation and characterization of a previously undescribed penillic acid analogue named laburnicolamine (1). The chemical structure was elucidated through comprehensive 1D and 2D NMR spectroscopic analyses in methanol-d4 and DMSO-d6, alongside with HR-ESI-MS spectrometry. The absolute configuration of 1 was concluded through the electronic circular dichroism (ECD) and time-dependent density functional theory-ECD (TDDFT-ECD) computations compared to its acquired spectrum. Biological assays revealed that compound 1 exhibited no significant cytotoxic, antimicrobial, or nematicidal activity.

8.
Molecules ; 29(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38930924

RESUMO

A chemical and biological exploration of the European polypore Dentipellis fragilis afforded two previously undescribed natural products (1 and 2), together with three known derivatives (3-5). Chemical structures of the isolated compounds were confirmed through 1D/2D NMR spectroscopic analyses, mass spectrometry, and by comparison with the reported literature. The relative and absolute configurations of 1 were determined according to the ROESY spectrum and time-dependent density functional theory electronic circular dichroism (TDDFT-ECD), respectively. Furthermore, the absolute configuration of dentipellinol (3) was revisited and revealed to be of (R) configuration. All the isolated compounds were assessed for their cytotoxic and antimicrobial activities, with some being revealed to have weak to moderate antimicrobial activity, particularly against Gram-positive bacteria.


Assuntos
Testes de Sensibilidade Microbiana , Humanos , Estrutura Molecular , Basidiomycota/química , Espectroscopia de Ressonância Magnética , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Dicroísmo Circular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Bactérias Gram-Positivas/efeitos dos fármacos , Linhagem Celular Tumoral
9.
Palliat Support Care ; 22(1): 182-189, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381712

RESUMO

BACKGROUND: Alzheimer's disease is a chronic neurodegenerative disorder that results in total cognitive impairment and functional decline. Family members are the most usual caregivers worldwide, resulting in an increasing total burden and a subsequent degradation of their quality of life. OBJECTIVES: To evaluate the burden of care and quality of life among informal caregivers to Alzheimer patients in Egypt. METHODS: A descriptive research design was used. The study was conducted at outpatient clinics of El-Abbasya Mental Hospital in Cairo, Egypt. This study included 550 informal caregivers of Alzheimer patients. Data were gathered through questionnaires using the Sociodemographic Profile of Family Caregivers, an adopted version of the Montgomery Borgatta Caregiver Burden scale, and Health-Related Quality of Life Scale. RESULTS: Nearly three quarters (73.5%) of the informal caregivers were female. Additionally, the physical burden among the informal caregivers was the highest (21.58 ± 8.13), while the psychological burden was the lowest (7.48 ± 25.35). Besides, around one-third (30%) of the informal caregivers had a total poor quality of life. SIGNIFICANCE OF RESULTS: Total burden among informal caregivers of Alzheimer patients was relatively high (64.71 ± 26.86). Moreover, less than one-tenth (8%) of the informal caregivers for Alzheimer's patients had a good quality of life, whereas more than half (62%) of them had an average quality of life. In the Egyptian context, ongoing health education initiatives for those who care for Alzheimer patients are essential, and additional research employing large study sample sizes in varied contexts is strongly advised.


Assuntos
Doença de Alzheimer , Cuidadores , Humanos , Feminino , Masculino , Cuidadores/psicologia , Qualidade de Vida/psicologia , Doença de Alzheimer/complicações , Doença de Alzheimer/psicologia , Egito , Família , Doença Crônica
10.
Genes Cells ; 27(5): 331-344, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194903

RESUMO

Base excision repair (BER) removes damaged bases by generating single-strand breaks (SSBs), gap-filling by DNA polymerase ß (POLß), and resealing SSBs. A base-damaging agent, methyl methanesulfonate (MMS) is widely used to study BER. BER increases cellular tolerance to MMS, anti-cancer base-damaging drugs, temozolomide, carmustine, and lomustine, and to clinical poly(ADP ribose)polymerase (PARP) poisons, olaparib and talazoparib. The poisons stabilize PARP1/SSB complexes, inhibiting access of BER factors to SSBs. PARP1 and XRCC1 collaboratively promote SSB resealing by recruiting POLß to SSBs, but XRCC1-/- cells are much more sensitive to MMS than PARP1-/- cells. We recently report that the PARP1 loss in XRCC1-/- cells restores their MMS tolerance and conclude that XPCC1 facilitates the release of PARP1 from SSBs by maintaining its autoPARylation. We here show that the PARP1 loss in XRCC1-/- cells also restores their tolerance to the three anti-cancer base-damaging drugs, although they and MMS induce different sets of base damage. We reveal the synthetic lethality of the XRCC1-/- mutation, but not POLß-/- , with olaparib and talazoparib, indicating that XRCC1 is a unique BER factor in suppressing toxic PARP1/SSB complex and can suppress even when PARP1 catalysis is inhibited. In conclusion, XRCC1 suppresses the PARP1/SSB complex via PARP1 catalysis-dependent and independent mechanisms.


Assuntos
Venenos , Poli(ADP-Ribose) Polimerases , Adenosina Difosfato Ribose , Alquilantes , DNA , Dano ao DNA , Reparo do DNA , Metanossulfonato de Metila/farmacologia , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Temozolomida/farmacologia
11.
J Recept Signal Transduct Res ; 43(6): 133-143, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38166612

RESUMO

Triple-negative breast cancer (TNBC) is associated with high-grade invasive carcinoma leading to a 10% to 15% death rate in younger premenopausal women. Targeting cancerous inhibitors of protein phosphatase (CIP2A) has been a highly effective approach for exploring therapeutic drug candidates. Lapatinib, a dual tyrosine kinase inhibitor, has shown promising inhibition properties by inducing apoptosis in TNBC carcinogenesis in vivo. Despite knowledge of the 3D structure of CIP2A, no reports provide insight into CIP2A ligand binding sites. To this effect, we conducted in silico site identification guided by lapatinib binding. Four of the five sites identified were cross-validated, and the stem domain revealed more excellent ligand binding affinity. The binding affinity of lapatinib in these sites was further computed using the Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) approach. According to MM/PBSA//200 ns MD simulations, lapatinib exhibited a higher binding affinity against CIP2A in site 2 with ΔG critical values of -37.1 kcal/mol. The steadiness and tightness of lapatinib with CIP2A inside the stem domain disclosed glutamic acid-318 as the culprit amino acid with the highest electrostatic energy. These results provide clear information on the CIP2A domain capable of ligand binding and validate lapatinib as a promising CIP2A inhibitor in TNBC carcinogenesis.


Assuntos
Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Lapatinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ligantes , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição , Sítios de Ligação , Carcinogênese , Linhagem Celular Tumoral
12.
Diabetes Metab Res Rev ; 39(3): e3604, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36547366

RESUMO

BACKGROUND: Fasting during the holy month of Ramadan is one of the five pillars of Islam. Fasting is not meant to create excessive hardship on the Muslim individual according to religious tenets. It is important that health professionals are aware of potential risks associated with fasting during the month of Ramadan (mainly hypoglycemia and hyperglycemia). AIMS: To explore the impact of applying the principles of our 2020 recommendations for the management of type 2 diabetes (T2D) during the month of Ramadan. METHODS: A multinational randomized controlled trial (RCT) was conducted in five Muslim majority countries. Six hundred and sixty participants were deemed eligible for the study; however, 23% declined to participate later for various reasons. In total, 506 participants were enroled and were equally randomized to the intervention or the control group. At the end of the study, data from 231 participants in the intervention group and 221 participants from the control group were collected after 12.6% and 8.7% were, respectively, lost to follow-up. Participants were randomized to receive a Ramadan-focussed education with treatment for diabetes adjusted as per our 2020 recommendation update compared with the local usual care (control group). Results are presented using mean, standard deviation, odds ratio (OR), and percentages. RESULTS: At the end of the study, the number of hypoglycemic episodes in the intervention group was less than in participants who received usual care. The intervention group had significantly lower severe hypoglycemia compared to the control group with an OR of 0.2 [0.1-0.8]. Compared to baseline, both groups had a significant reduction in glycated haemoglobin (HbA1c), but the improvements were significantly greater in the intervention group. Whilst body weight reduced and high-density lipoprotein cholesterol increased with the intervention, these changes were not significantly different from usual care. CONCLUSIONS: A pre-Ramadan assessment of people with T2D coupled with pre-Ramadan education and an adjustment of glucose-lowering treatment as per our updated 2020 recommendations can prevent acute complications and allow a safer fast for people with T2D. We have shown that such an approach reduces the risk of developing severe hypoglycemia and improves the metabolic outcomes in people with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Humanos , Hipoglicemiantes/efeitos adversos , Consenso , Jejum/efeitos adversos , Diabetes Mellitus Tipo 2/terapia , Hipoglicemia/etiologia , Hipoglicemia/prevenção & controle , Islamismo , Glicemia/metabolismo
13.
Mol Cell ; 57(4): 674-684, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25639469

RESUMO

Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in HeLa cells revealed that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that about half of promoters are unidirectional and that unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process but rather the consequence of the presence of both forward- and reverse-directed core promoters.


Assuntos
Modelos Genéticos , Regiões Promotoras Genéticas , RNA Polimerase II/fisiologia , Células HeLa , Humanos , Análise de Sequência de DNA , Sítio de Iniciação de Transcrição , Transcrição Gênica/fisiologia
14.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36772453

RESUMO

Digital twin (DT) technology has been used in a wide range of applications, including electric vehicles. The DT platform provides a virtual representation or advanced simulation of a physical object in real-time. The implementation of DT on various aspects of EVs has recently transpired in different research studies. Generally, DT can emulate the actual vehicle on the road to predict/optimize its performance and improve vehicle safety. Additionally, DT can be used for the optimization of manufacturing processes, real-time condition monitoring (at all levels and in all powertrain components), energy management optimization, repurposing of the components, and even recycling processes. This paper presents an overview of different DT platforms that can be used in EV applications. A deductive comparison between model-based and data-driven DT was performed. EV main systems have been discussed regarding the usable DT platform. DT platforms used in the EV industry were addressed. Finally, the review showed the superiority of data-driven DTs over model-based DTs due to their ability to handle systems with high complexity.

15.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677841

RESUMO

The Bcl-2 protein has a vital function in controlling the programmed cell doom of mitochondria. If programmed cell death signals are obstructed, an imbalance between cell survival and death will occur, which is a significant reason for cancer. Therefore, the Bcl-2 protein was identified as a possible therapeutic target for carcinoma treatment. Herein, the Natural Products Atlas (NPAtlas) compounds were virtually screened, seeking potent inhibitors towards the Bcl-2 protein. The performance of AutoDock Vina software to predict the docking score and pose of the investigated compounds was first validated according to the available experimental data. Based on the validated AutoDock Vina parameters, the NPAtlas database was filtered against the Bcl-2 protein. The natural compounds with docking scores less than that of the venetoclax (calc. -10.6 kcal/mol) were submitted to MD simulations, followed by MM-GBSA binding energy calculations. According to MM-GBSA//200 ns MD simulations, saquayamycin F (NPA002200) demonstrated promising binding affinity with a ΔGbinding value of -53.9 kcal/mol towards the Bcl-2 protein when compared to venetoclax (ΔGbinding = -50.6 kcal/mol). The energetical and structural analyses showed a great constancy of the saquayamycin F inside the Bcl-2 protein active site. Moreover, the ADMET and drug-likeness features of the saquayamycin F were anticipated, indicating its good oral bioavailability. According to in silico computations, saquayamycin F is proposed to be used as a therapeutic agent against the wild-type Bcl-2 protein and warrants further experimental assays.


Assuntos
Antineoplásicos , Produtos Biológicos , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Simulação de Dinâmica Molecular , Antineoplásicos/farmacologia
16.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770815

RESUMO

The dramatic rise in cancer incidence, alongside treatment deficiencies, has elevated cancer to the second-leading cause of death globally. The increasing morbidity and mortality of this disease can be traced back to a number of causes, including treatment-related side effects, drug resistance, inadequate curative treatment and tumor relapse. Recently, anti-cancer bioactive peptides (ACPs) have emerged as a potential therapeutic choice within the pharmaceutical arsenal due to their high penetration, specificity and fewer side effects. In this contribution, we present a general overview of the literature concerning the conformational structures, modes of action and membrane interaction mechanisms of ACPs, as well as provide recent examples of their successful employment as targeting ligands in cancer treatment. The use of ACPs as a diagnostic tool is summarized, and their advantages in these applications are highlighted. This review expounds on the main approaches for peptide synthesis along with their reconstruction and modification needed to enhance their therapeutic effect. Computational approaches that could predict therapeutic efficacy and suggest ACP candidates for experimental studies are discussed. Future research prospects in this rapidly expanding area are also offered.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química
17.
Inflammopharmacology ; 31(6): 3127-3142, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37526838

RESUMO

Methotrexate (MTX) and diacerein (DIA) are two of the most potent disease-modifying anti-rheumatic drugs used for the treatment of rheumatoid arthritis (RA). DIA has reflected some GIT and hepatobiliary manifestations in numerous cases. It undergoes biotransformation in the liver into the active metabolite rhein (RH) which is characterized by its excellent anti-inflammatory activity and lower side effects. However, RH's hydrophobic nature and low bioavailability do not encourage its use in RA. The current study aims to use RH in combination with MTX in targeted solid lipid nanoparticles (RH-MTX-SLNs) for better effectiveness and shadowing light on its possible mechanistic pathways. RH-MTX-SLNs were prepared and assessed for their quality attributes. The effect of the formulation was assessed in-vivo in an adjuvant arthritis animal model investigating the role of the endoplasmic reticulum stress (ERS)-induced apoptosis. Results revealed that RH-MTX-SLNs were in the suitable nanosized range with high negative zeta potential indicating good stability. In-vivo, RH-MTX-SLNs significantly improved all measured inflammatory and arthritic markers, confirmed by electron microscopy and histology examination of the joints. Besides, the formulation was able to alter the ERS-mediated apoptosis. In conclusion, RH-MTX-SLNs can represent a promising therapeutic approach for RA showing significant anti-arthritic activity.


Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Nanopartículas , Animais , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/metabolismo , Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Reumatoide/metabolismo
18.
Molecules ; 28(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513348

RESUMO

The potentiality of the ß12 borophene (ß12) and pristine graphene (GN) nanosheets to adsorb tetrahalomethanes (CX4; X = F, Cl, and Br) were investigated using density functional theory (DFT) methods. To provide a thorough understanding of the adsorption process, tetrel (XC-X3∙∙∙ß12/GN)- and halogen (X3C-X∙∙∙ß12/GN)-oriented configurations were characterized at various adsorption sites. According to the energetic manifestations, the adsorption process of the CX4∙∙∙ß12/GN complexes within the tetrel-oriented configuration led to more desirable negative adsorption energy (Eads) values than that within the halogen-oriented analogs. Numerically, Eads values of the CBr4∙∙∙Br1@ß12 and T@GN complexes within tetrel-/halogen-oriented configurations were -12.33/-8.91 and -10.03/-6.00 kcal/mol, respectively. Frontier molecular orbital (FMO) results exhibited changes in the EHOMO, ELUMO, and Egap values of the pure ß12 and GN nanosheets following the adsorption of CX4 molecules. Bader charge transfer findings outlined the electron-donating property for the CX4 molecules after adsorbing on the ß12 and GN nanosheets within the two modeled configurations, except the adsorbed CBr4 molecule on the GN sheet within the tetrel-oriented configuration. Following the adsorption process, new bands and peaks were observed in the band structure and density of state (DOS) plots, respectively, with a larger number in the case of the tetrel-oriented configuration than in the halogen-oriented one. According to the solvent effect affirmations, adsorption energies of the CX4∙∙∙ß12/GN complexes increased in the presence of a water medium. The results of this study will serve as a focal point for experimentalists to better comprehend the adsorption behavior of ß12 and GN nanosheets toward small toxic molecules.

19.
Molecules ; 28(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36985777

RESUMO

The unusual and interesting architecture of the catalytic chamber of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) was recently explored using Cryogenic Electron Microscopy (Cryo-EM), which revealed the presence of two distinctive binding cavities within the catalytic chamber. In this report, first, we mapped out and fully characterized the variations between the two binding sites, BS1 and BS2, for significant differences in their amino acid architecture, size, volume, and hydrophobicity. This was followed by investigating the preferential binding of eight antiviral agents to each of the two binding sites, BS1 and BS2, to understand the fundamental factors that govern the preferential binding of each drug to each binding site. Results showed that, in general, hydrophobic drugs, such as remdesivir and sofosbuvir, bind better to both binding sites than relatively less hydrophobic drugs, such as alovudine, molnupiravir, zidovudine, favilavir, and ribavirin. However, suramin, which is a highly hydrophobic drug, unexpectedly showed overall weaker binding affinities in both binding sites when compared to other drugs. This unexpected observation may be attributed to its high binding solvation energy, which disfavors overall binding of suramin in both binding sites. On the other hand, hydrophobic drugs displayed higher binding affinities towards BS1 due to its higher hydrophobic architecture when compared to BS2, while less hydrophobic drugs did not show a significant difference in binding affinities in both binding sites. Analysis of binding energy contributions revealed that the most favorable components are the ΔEele, ΔEvdw, and ΔGgas, whereas ΔGsol was unfavorable. The ΔEele and ΔGgas for hydrophobic drugs were enough to balance the unfavorable ΔGsol, leaving the ΔEvdw to be the most determining factor of the total binding energy. The information presented in this report will provide guidelines for tailoring SARS-CoV-2 inhibitors with enhanced binding profiles.


Assuntos
COVID-19 , Humanos , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/metabolismo , RNA Viral , Suramina , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Simulação de Acoplamento Molecular
20.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677732

RESUMO

Centaurea is a genus compromising over 250 herbaceous flowering species and is used traditionally to treat several ailments. Among the Egyptian Centaurea species, C. lipii was reported to be cytotoxic against multidrug-resistant cancer cells. In this context, we aimed to explore the metabolome of C. lipii and compare it to other members of the genus in pursuance of identifying its bioactive principles. An LC-MS/MS analysis approach synchronized with feature-based molecular networks was adopted to offer a holistic overview of the metabolome diversity of the Egyptian Centaurea species. The studied plants included C. alexandrina, C. calcitrapa, C. eryngioides, C. glomerata, C. lipii, C. pallescens, C. pumilio, and C. scoparia. Their constitutive metabolome showed diverse chemical classes such as cinnamic acids, sesquiterpene lactones, flavonoids, and lignans. Linking the recorded metabolome to the previously reported cytotoxicity identified sesquiterpene lactones as the major contributors to this activity. To confirm our findings, bioassay-guided fractionation of C. lipii was adopted and led to the isolation of the sesquiterpene lactone cynaropicrin with an IC50 of 1.817 µM against the CCRF-CEM leukemia cell line. The adopted methodology highlighted the uniqueness of the constitutive metabolome of C. lipii and determined the sesquiterpene lactones to be the responsible cytotoxic metabolites.


Assuntos
Antineoplásicos , Centaurea , Sesquiterpenos , Extratos Vegetais/química , Cromatografia Líquida , Resistência a Múltiplos Medicamentos , Egito , Resistencia a Medicamentos Antineoplásicos , Espectrometria de Massas em Tandem , Centaurea/química , Compostos Fitoquímicos/farmacologia , Sesquiterpenos/química , Lactonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA