RESUMO
We synthesized derivatives of the δ opioid receptor (DOR) antagonists naltrindole (NTI) and compound 1 that were modified with small alkyl or fluorinated ethyl substituents on the 17-nitrogen. Although the derivatives showed decreased binding affinities for the opioid receptors, their selectivities for the DOR were higher than the parent compounds NTI and compound 1. Surprisingly, 17-fluoroethyl NTI derivatives exerted DOR inverse agonistic activities. The DOR inverse agonism of compounds 4c-e was less efficacious but significant, as compared with a standard DOR inverse agonist ICI-174864. On the other hand, compound 1 and its derivatives with small alkyl or monofluoroethyl substituents were partial agonists, but the derivatives having di- or trifluoroethyl group showed neither agonistic nor inverse agonistic activities.
Assuntos
Naltrexona/análogos & derivados , Antagonistas de Entorpecentes/química , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides delta/agonistas , Agonismo Inverso de Drogas , Encefalina Leucina/análogos & derivados , Encefalina Leucina/farmacologia , Halogenação , Humanos , Naltrexona/química , Naltrexona/farmacologia , Receptores Opioides delta/metabolismo , Proteínas Recombinantes/metabolismoRESUMO
We investigated the structure-activity relationship of KNT-127 (opioid δ agonist) derivatives with various 17-substituents which are different in length and size. The 17-substituent in KNT-127 derivatives exerted a great influence on the affinity and agonistic activity for the δ receptor. While the compounds with electron-donating 17-substituents showed higher affinities for the δ receptor than those with electron-withdrawing groups, KNT-127 derivatives with 17-fluoroalkyl groups (the high electron-withdrawing groups) showed high selectivities for the δ receptor among evaluated compounds. In addition, the basicity of nitrogen as well as the structure of the 17-N substituent such as the length and configuration at an asymmetric carbon atom contributed to agonist properties for the δ receptor. Thus, the analog with a 17-(3-ethoxypropyl) group showed the best selectively and potent agonistic activity for the δ receptor among KNT-127 derivatives. These findings should be useful for designing novel δ selective agonists.