Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2312306120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147546

RESUMO

The neuron-to-neuron propagation of misfolded α-synuclein (αSyn) aggregates is thought to be key to the pathogenesis of synucleinopathies. Recent studies have shown that extracellular αSyn aggregates taken up by the endosomal-lysosomal system can rupture the lysosomal vesicular membrane; however, it remains unclear whether lysosomal rupture leads to the transmission of αSyn aggregation. Here, we applied cell-based αSyn propagation models to show that ruptured lysosomes are the pathway through which exogenous αSyn aggregates transmit aggregation, and furthermore, this process was prevented by lysophagy, i.e., selective autophagy of damaged lysosomes. αSyn aggregates accumulated predominantly in lysosomes, causing their rupture, and seeded the aggregation of endogenous αSyn, initially around damaged lysosomes. Exogenous αSyn aggregates induced the accumulation of LC3 on lysosomes. This LC3 accumulation was not observed in cells in which a key regulator of autophagy, RB1CC1/FIP200, was knocked out and was confirmed as lysophagy by transmission electron microscopy. Importantly, RB1CC1/FIP200-deficient cells treated with αSyn aggregates had increased numbers of ruptured lysosomes and enhanced propagation of αSyn aggregation. Furthermore, various types of lysosomal damage induced using lysosomotropic reagents, depletion of lysosomal enzymes, or more toxic species of αSyn fibrils also exacerbated the propagation of αSyn aggregation, and impaired lysophagy and lysosomal membrane damage synergistically enhanced propagation. These results indicate that lysophagy prevents exogenous αSyn aggregates from escaping the endosomal-lysosomal system and transmitting aggregation to endogenous cytosolic αSyn via ruptured lysosomal vesicles. Our findings suggest that the progression and severity of synucleinopathies are associated with damage to lysosomal membranes and impaired lysophagy.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína/metabolismo , Macroautofagia , Sinucleinopatias/metabolismo , Doença de Parkinson/metabolismo , Lisossomos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(39): e2221553120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722055

RESUMO

Accumulating evidence has demonstrated the presence of intertissue-communication regulating systemic aging, but the underlying molecular network has not been fully explored. We and others previously showed that two basic helix-loop-helix transcription factors, MML-1 and HLH-30, are required for lifespan extension in several longevity paradigms, including germlineless Caenorhabditis elegans. However, it is unknown what tissues these factors target to promote longevity. Here, using tissue-specific knockdown experiments, we found that MML-1 and its heterodimer partners MXL-2 and HLH-30 act primarily in neurons to extend longevity in germlineless animals. Interestingly, however, the downstream cascades of MML-1 in neurons were distinct from those of HLH-30. Neuronal RNA interference (RNAi)-based transcriptome analysis revealed that the glutamate transporter GLT-5 is a downstream target of MML-1 but not HLH-30. Furthermore, the MML-1-GTL-5 axis in neurons is critical to prevent an age-dependent collapse of proteostasis and increased oxidative stress through autophagy and peroxidase MLT-7, respectively, in long-lived animals. Collectively, our study revealed that systemic aging is regulated by a molecular network involving neuronal MML-1 function in both neural and peripheral tissues.


Assuntos
Envelhecimento , Neurônios , Animais , Envelhecimento/genética , Sistema X-AG de Transporte de Aminoácidos , Autofagia/genética , Caenorhabditis elegans/genética , Peroxidases , Proteínas de Caenorhabditis elegans/genética
3.
PLoS Genet ; 18(6): e1010264, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35771772

RESUMO

Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.


Assuntos
Caenorhabditis elegans , Macroautofagia , Animais , Autofagossomos/metabolismo , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Macroautofagia/genética , Proteínas SNARE/metabolismo
4.
Neurol Sci ; 45(7): 3147-3152, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38383749

RESUMO

OBJECTIVE: This study aimed to develop a Japanese version of the New Freezing of Gait Questionnaire (NFOG-Q) and investigate its validity and reliability. METHODS: After translating the NFOG-Q according to a standardised protocol, 56 patients with Parkinson's disease (PD) were administered it. Additionally, the MDS-UPDRS parts II and III, Hoehn and Yahr (H&Y) stage, and number of falls over 1 month were evaluated. Spearman's correlation coefficients (rho) were used to determine construct validity, and Cronbach's alpha (α) was used to examine reliability. RESULTS: The interquartile range of the NFOG-Q scores was 10.0-25.3 (range 0-29). The NFOG-Q scores were strongly correlated with the MDS-UPDRS part II, items 2.12 (walking and balance), 2.13 (freezing), 3.11 (freezing of gait), and 3.12 (postural stability) and the postural instability and gait difficulty score (rho = 0.515-0.669), but only moderately related to the MDS-UPDRS item 3.10 (gait), number of falls, disease duration, H&Y stage, and time of the Timed Up-and-Go test (rho = 0.319-0.434). No significant correlations were observed between age and the time of the 10-m walk test. The internal consistency was excellent (α = 0.96). CONCLUSIONS: The Japanese version of the NFOG-Q is a valid and reliable tool for assessing the severity of freezing in patients with PD.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Masculino , Feminino , Idoso , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Transtornos Neurológicos da Marcha/diagnóstico , Transtornos Neurológicos da Marcha/fisiopatologia , Reprodutibilidade dos Testes , Inquéritos e Questionários/normas , Japão , Pessoa de Meia-Idade , Tradução , Índice de Gravidade de Doença , Idoso de 80 Anos ou mais , População do Leste Asiático
5.
Biochem Biophys Res Commun ; 644: 25-33, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36621149

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive accumulation of α-synuclein aggregates in form of Lewy bodies. Genome-wide association studies have revealed that human leukocyte antigen (HLA) class II is a PD-associated gene, although the mechanisms linking HLA class II and PD remain elusive. Here, we identified a novel function of HLA class II in the transport of intracellular α-synuclein to the outside of cells. HLA class II molecules and α-synuclein formed complexes and moved to the cell surface at various degrees among HLA-DR alleles. HLA-DR with a DRB5∗01:01 allele, a putative PD-risk allele, substantially translocated normal and conformationally abnormal α-synuclein to the cell surface and extracellular vesicles. α-Synuclein/HLA class II complexes were found in A2058 melanoma cells, which express intrinsic α-synuclein and HLA-DR with DRB5∗01:01. Our findings will expand our knowledge of unconventional HLA class II function from autoimmune diseases to neurodegenerative disorders, shedding light on the association between the GWAS-prioritized PD-risk gene HLA-DR and α-synuclein.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Estudo de Associação Genômica Ampla , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Corpos de Lewy/metabolismo , Antígenos HLA
6.
Acta Neuropathol ; 145(5): 573-595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939875

RESUMO

Lipid interaction with α-synuclein (αSyn) has been long implicated in the pathogenesis of Parkinson's disease (PD). However, it has not been fully determined which lipids are involved in the initiation of αSyn aggregation in PD. Here exploiting genetic understanding associating the loss-of-function mutation in Synaptojanin 1 (SYNJ1), a phosphoinositide phosphatase, with familial PD and analysis of postmortem PD brains, we identified a novel lipid molecule involved in the toxic conversion of αSyn and its relation to PD. We first established a SYNJ1 knockout cell model and found SYNJ1 depletion increases the accumulation of pathological αSyn. Lipidomic analysis revealed SYNJ1 depletion elevates the level of its substrate phosphatidylinositol-3,4,5-trisphosphate (PIP3). We then employed Caenorhabditis elegans model to examine the effect of SYNJ1 defect on the neurotoxicity of αSyn. Mutations in SYNJ1 accelerated the accumulation of αSyn aggregation and induced locomotory defects in the nematodes. These results indicate that functional loss of SYNJ1 promotes the pathological aggregation of αSyn via the dysregulation of its substrate PIP3, leading to the aggravation of αSyn-mediated neurodegeneration. Treatment of cultured cell line and primary neurons with PIP3 itself or with PIP3 phosphatase inhibitor resulted in intracellular formation of αSyn inclusions. Indeed, in vitro protein-lipid overlay assay validated that phosphoinositides, especially PIP3, strongly interact with αSyn. Furthermore, the aggregation assay revealed that PIP3 not only accelerates the fibrillation of αSyn, but also induces the formation of fibrils sharing conformational and biochemical characteristics similar to the fibrils amplified from the brains of PD patients. Notably, the immunohistochemical and lipidomic analyses on postmortem brain of patients with sporadic PD showed increased PIP3 level and its colocalization with αSyn. Taken together, PIP3 dysregulation promotes the pathological aggregation of αSyn and increases the risk of developing PD, and PIP3 represents a potent target for intervention in PD.


Assuntos
Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Encéfalo/patologia , Lipídeos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo
7.
Neuropathology ; 43(4): 326-332, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36593715

RESUMO

We report an autopsy case of progressive supranuclear palsy (PSP-Richardson syndrome). The individual had been enrolled in a phase 2 trial and received a monoclonal tau antibody (tilavonemab, ABBV-8E12); he died of intrahepatic cholangiocarcinoma and gastrointestinal bleeding during the clinical trial. Neuropathological examination demonstrated neuronal loss, gliosis, and widespread deposits of phosphorylated tau in the neurofibrillary tangles, tufted astrocytes, coiled bodies, and threads, which mainly occurred in the inferior olive nucleus, dentate nucleus of the cerebellum, substantia nigra, midbrain tegmentum, subthalamic nuclei, globus pallidus, putamen, and precentral gyrus, confirming typical PSP pathology. Phosphorylated tau was also found to accumulate in Betz cells, Purkinje cells, and pencil fibers in the basal ganglia. In conclusion, no additional changes or pathological modifications, which were expected from immunotherapy targeting tau, were visible in the present case.


Assuntos
Paralisia Supranuclear Progressiva , Masculino , Humanos , Paralisia Supranuclear Progressiva/patologia , Anticorpos Monoclonais/uso terapêutico , Autopsia , Gânglios da Base/patologia , Emaranhados Neurofibrilares/patologia , Proteínas tau/metabolismo
8.
J Biol Chem ; 297(5): 101286, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34626645

RESUMO

Amyloid fibrils, crystal-like fibrillar aggregates of proteins associated with various amyloidoses, have the potential to propagate via a prion-like mechanism. Among known methodologies to dissolve preformed amyloid fibrils, acid treatment has been used with the expectation that the acids will degrade amyloid fibrils similar to acid inactivation of protein functions. Contrary to our expectation, treatment with strong acids, such as HCl or H2SO4, of ß2-microglobulin (ß2m) or insulin actually promoted amyloid fibril formation, proportionally to the concentration of acid used. A similar promotion was observed at pH 2.0 upon the addition of salts, such as NaCl or Na2SO4. Although trichloroacetic acid, another strong acid, promoted amyloid fibril formation of ß2m, formic acid, a weak acid, did not, suggesting the dominant role of anions in promoting fibril formation of this protein. Comparison of the effects of acids and salts confirmed the critical role of anions, indicating that strong acids likely induce amyloid fibril formation via an anion-binding mechanism. The results suggest that although the addition of strong acids decreases pH, it is not useful for degrading amyloid fibrils, but rather induces or stabilizes amyloid fibrils via an anion-binding mechanism.


Assuntos
Amiloide/química , Agregados Proteicos , Microglobulina beta-2/química , Ânions/química , Dicroísmo Circular , Humanos , Concentração de Íons de Hidrogênio , Cloreto de Sódio/química
9.
J Biol Chem ; 296: 100510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676889

RESUMO

Polyphosphates (polyPs), chains of phosphate residues found in species across nature from bacteria to mammals, were recently reported to accelerate the amyloid fibril formation of many proteins. How polyPs facilitate this process, however, remains unknown. To gain insight into their mechanisms, we used various physicochemical approaches to examine the effects of polyPs of varying chain lengths on ultrasonication-dependent α-synuclein (α-syn) amyloid formation. Although orthophosphate and diphosphate exhibited a single optimal concentration of amyloid formation, triphosphate and longer-chain phosphates exhibited two optima, with the second at a concentration lower than that of orthophosphate or diphosphate. The second optimum decreased markedly as the polyP length increased. This suggested that although the optima at lower polyP concentrations were caused by interactions between negatively charged phosphate groups and the positive charges of α-syn, the optima at higher polyP concentrations were caused by the Hofmeister salting-out effects of phosphate groups, where the effects do not depend on the net charge. NMR titration experiments of α-syn with tetraphosphate combined with principal component analysis revealed that, at low tetraphosphate concentrations, negatively charged tetraphosphates interacted with positively charged "KTK" segments in four KTKEGV repeats located at the N-terminal region. At high concentrations, hydrated tetraphosphates affected the surface-exposed hydrophilic groups of compact α-syn. Taken together, our results suggest that long-chain polyPs consisting of 60 to 70 phosphates induce amyloid formation at sub-µM concentrations, which are comparable with the concentrations of polyPs in the blood or tissues. Thus, these findings may identify a role for polyPs in the pathogenesis of amyloid-related diseases.


Assuntos
Amiloide/biossíntese , Polifosfatos/farmacologia , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , alfa-Sinucleína/metabolismo
10.
Eur J Neurol ; 29(5): 1410-1416, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35128793

RESUMO

BACKGROUND AND PURPOSE: The aim was to investigate the association between serum asymmetric dimethylarginine (ADMA) levels and the progression and prognosis of amyotrophic lateral sclerosis (ALS), and to compare cerebrospinal fluid (CSF) and serum ADMA levels with other biomarkers of ALS. METHODS: Serum ADMA levels of sporadic ALS patients (n = 68), disease control patients (n = 54) and healthy controls (n = 20) were measured using liquid chromatography tandem mass spectrometry. Correlations of the ADMA level and other markers (nitric oxide and neurofilament light chain levels) were analyzed. Changes in the ALS Functional Rating Scale Revised (ALSFRS-R) score from the onset of disease (ALSFRS-R pre-slope) was used to assess disease progression. Survival was evaluated using the Cox proportional hazards model and Kaplan-Meier analysis. RESULTS: The serum ADMA level was substantially higher in patients with ALS than in healthy controls and disease controls. Serum ADMA level correlated with CSF ADMA level (r = 0.591, p < 0.0001) and was independently associated with the ALSFRS-R pre-slope (r = 0.505, p < 0.0001). Patients with higher serum ADMA levels had less favorable prognoses. CSF ADMA level significantly correlated with CSF neurofilament light chain level (r = 0.456, p = 0.0002) but not with nitric oxide level (r = 0.194, p = 0.219). CONCLUSION: Serum ADMA level is an independent biomarker of ALS disease progression and prognosis and reflects the degree of motor neuron degeneration.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/diagnóstico , Arginina/análogos & derivados , Biomarcadores , Progressão da Doença , Humanos , Óxido Nítrico , Prognóstico
11.
Anal Chem ; 93(32): 11176-11183, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34351734

RESUMO

Amyloid fibrils are formed from various proteins, some of which cause the corresponding neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. It has been reported that many compounds inhibit the formation of amyloid fibrils. Anthocyanins are flavonoid pigments present in fruits and vegetables, which are known to suppress symptoms related with Alzheimer's disease. However, the influence of anthocyanins on the amyloid fibril remains unclear. Here, we succeeded in the direct monitoring of the disaggregation reaction of single amyloid ß (Aß) fibrils by anthocyanins using total-internal-reflection-fluorescence microscopy with a quartz-crystal microbalance (TIRFM-QCM). It is found that the disassembly activity to the Aß fibrils depends on the number of hydroxyl groups in six-membered ring B of anthocyanin, and only delphinidin-3-galactoside, possessing three hydroxyl groups there, shows high disassembly activity. Our results show the importance of the number of hydroxyl groups and demonstrate the usefulness of TIRFM-QCM as a powerful tool in studying interactions between amyloid fibrils and compounds.


Assuntos
Peptídeos beta-Amiloides , Técnicas Biossensoriais , Amiloide , Antocianinas , Microscopia de Fluorescência , Fragmentos de Peptídeos , Quartzo
12.
Mov Disord ; 35(2): 256-267, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31643109

RESUMO

OBJECTIVE: Alpha-synuclein (α-syn) is a major component of Lewy bodies, which are the pathological hallmark in Parkinson's disease, and its genetic mutations cause familial forms of Parkinson's disease. Patients with α-syn G51D mutation exhibit severe clinical symptoms. However, in vitro studies showed low propensity for α-syn with the G51D mutation. We studied the mechanisms associated with severe neurotoxicity of α-syn G51D mutation using a murine model generated by G51D α-syn fibril injection into the brain. METHODS: Structural analysis of wild-type and G51D α-syn-fibrils were performed using Fourier transform infrared spectroscopy. The ability of α-syn fibrils forming aggregates was first assessed in in vitro mammalian cells. An in vivo mouse model with an intranigral injection of α-syn fibrils was then used to evaluate the propagation pattern of α-syn and related cellular changes. RESULTS: We found that G51D α-syn fibrils have higher ß-sheet contents than wild-type α-syn fibrils. The addition of G51D α-syn fibrils to mammalian cells overexpressing α-syn resulted in the formation of phosphorylated α-syn inclusions at a higher rate. Similarly, an injection of G51D α-syn fibrils into the substantia nigra of a mouse brain induced more widespread phosphorylated α-syn pathology. Notably, the mice injected with G51D α-syn fibrils exhibited progressive nigral neuronal loss accompanied with mitochondrial abnormalities and motor impairment. CONCLUSION: Our findings indicate that the structural difference of G51D α-syn fibrils plays an important role in the rapidly developed and more severe neurotoxicity of G51D mutation-linked Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Corpos de Lewy/patologia , Doença de Parkinson/patologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Corpos de Inclusão/metabolismo , Corpos de Lewy/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Doença de Parkinson/genética , Fosforilação , Substância Negra/metabolismo
13.
Neuropathology ; 40(2): 191-195, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31863610

RESUMO

We report an autopsy case of amyotrophic lateral sclerosis with L126S mutation in the superoxide dismutase 1 (SOD1) gene (SOD1). The patient was a 69-year-old Japanese man without relevant family history, who initially presented with slow progressive muscle weakness of the lower extremities without upper motor neuron signs, and died of respiratory failure 6 years after the onset. Neuropathological examination revealed a loss of lower motor neurons and degeneration of Clarke's column commensurate with that of the posterior spinocerebellar tract and the middle root zone of the posterior column. The primary motor area was minimally affected. Characteristic SOD1-immunopositive neuronal intracytoplasmic inclusions, mixed with neurofilament accumulation, were present in the affected areas. Isolated inferior olivary hypertrophy was observed, but did not involve the contralateral dentate nucleus, or the ipsilateral red nucleus and central tegmental tract, where no neuronal inclusions were found. In combination with data from a previous autopsy case, this study suggests that the L126S mutation may cause focal neuronal degeneration in the brainstem.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Núcleo Olivar/patologia , Superóxido Dismutase-1/genética , Idoso , Autopsia , Humanos , Hipertrofia , Masculino , Mutação
14.
Hum Mol Genet ; 24(2): 314-29, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25168383

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by the expansion of a CAG repeat in the androgen receptor (AR) gene. Mutant AR has been postulated to alter the expression of genes important for mitochondrial function and induce mitochondrial dysfunction. Here, we show that the expression levels of peroxisome proliferator-activated receptor-γ (PPARγ), a key regulator of mitochondrial biogenesis, were decreased in mouse and cellular models of SBMA. Treatment with pioglitazone (PG), an activator of PPARγ, improved the viability of the cellular model of SBMA. The oral administration of PG also improved the behavioral and histopathological phenotypes of the transgenic mice. Furthermore, immunohistochemical and biochemical analyses demonstrated that the administration of PG suppressed oxidative stress, nuclear factor-κB (NFκB) signal activation and inflammation both in the spinal cords and skeletal muscles of the SBMA mice. These findings suggest that PG is a promising candidate for the treatment of SBMA.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Transtornos Musculares Atróficos/tratamento farmacológico , Neurônios/efeitos dos fármacos , Peptídeos/metabolismo , Receptores Androgênicos/genética , Tiazolidinedionas/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo , Neurônios/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Pioglitazona , Receptores Androgênicos/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos
16.
Brain ; 136(Pt 5): 1371-82, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23449777

RESUMO

Amyotrophic lateral sclerosis is a devastating, progressive neurodegenerative disease that affects upper and lower motor neurons. Although several genes are identified as the cause of familial cases, the pathogeneses of sporadic forms, which account for 90% of amyotrophic lateral sclerosis, have not been elucidated. Transactive response DNA-binding protein 43 a nuclear protein regulating RNA processing, redistributes to the cytoplasm and forms aggregates, which are the histopathological hallmark of sporadic amyotrophic lateral sclerosis, in affected motor neurons, suggesting that loss-of-function of transactive response DNA-binding protein 43 is one of the causes of the neurodegeneration. To test this hypothesis, we assessed the effects of knockout of transactive response DNA-binding protein 43 in mouse postnatal motor neurons using Cre/loxp system. These mice developed progressive weight loss and motor impairment around the age of 60 weeks, and exhibited degeneration of large motor axon, grouped atrophy of the skeletal muscle, and denervation in the neuromuscular junction. The spinal motor neurons lacking transactive response DNA-binding protein 43 were not affected for 1 year, but exhibited atrophy at the age of 100 weeks; whereas, extraocular motor neurons, that are essentially resistant in amyotrophic lateral sclerosis, remained preserved even at the age of 100 weeks. Additionally, ultra structural analysis revealed autolysosomes and autophagosomes in the cell bodies and axons of motor neurons of the 100-week-old knockout mice. In summary, the mice in which transactive response DNA-binding protein 43 was knocked-out specifically in postnatal motor neurons exhibited an age-dependent progressive motor dysfunction accompanied by neuropathological alterations, which are common to sporadic amyotrophic lateral sclerosis. These findings suggest that transactive response DNA-binding protein 43 plays an essential role in the long term maintenance of motor neurons and that loss-of-function of this protein seems to contribute to the pathogenesis of amyotrophic lateral sclerosis.


Assuntos
Proteínas de Ligação a DNA/deficiência , Progressão da Doença , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/metabolismo , Fatores Etários , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia
17.
Pharmacol Res Perspect ; 12(1): e1174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38287715

RESUMO

The study aims to investigate the vitamin B6 levels in Parkinson's disease (PD) patients and their association with liver enzymes and evaluate how much dysregulation is associated with levodopa dose. Furthermore, to evaluate the effect of Opicapone, a catechol-o-methyl-transferase inhibitor, on vitamin B6 levels by monitoring the AST and ALT levels in patients treated with Levodopa-Carbidopa Intestinal Gel Infusion (LCIG). For these aims, serum vitamin B6 levels were measured (PD, n = 72 and controls, n = 31). The vitamin B6 level was compared with the total levodopa dose, clinical parameters, and blood homocysteine, albumin, and hemoglobin levels in PD patients. Correlations between vitamin B6 levels and AST and ALT levels, as well as the ratio ALT/AST, were analyzed. Changes in the AST and ALT levels and ALT/AST were analyzed in the patients treated with LCIG before and after the therapy (n = 24) and in the patients treated with LCIG + Opicapone before and after Opicapone treatment (n = 12). We found vitamin B6 levels were significantly lower in PD patients. Total levodopa dose and albumin levels were independently associated with vitamin B6 levels. Decreased vitamin B6 levels appeared as lower AST and ALT levels and ALT/AS. Treatment with LCIG decreased the AST and ALT levels and ALT/AST. Adjunctive therapy with Opicapone to LCIG ameliorated the decreased ALT and ALT/AST. We conclude that the ALT and ALT/AST can be useful parameters for monitoring vitamin B6 levels and Opicapone can ameliorate the dysregulated vitamin B6 in PD patients.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Levodopa/efeitos adversos , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Vitamina B 6/uso terapêutico , Albuminas/uso terapêutico
18.
Curr Biol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38889723

RESUMO

Nonhuman primates (NHPs) are indispensable animal models by virtue of the continuity of behavioral repertoires across primates, including humans. However, behavioral assessment at the laboratory level has so far been limited. Employing the application of three-dimensional (3D) pose estimation and the optimal integration of subsequent analytic methodologies, we demonstrate that our artificial intelligence (AI)-based approach has successfully deciphered the ethological, cognitive, and pathological traits of common marmosets from their natural behaviors. By applying multiple deep neural networks trained with large-scale datasets, we established an evaluation system that could reconstruct and estimate the 3D poses of the marmosets, a small NHP that is suitable for analyzing complex natural behaviors in laboratory setups. We further developed downstream analytic methodologies to quantify a variety of behavioral parameters beyond motion kinematics. We revealed the distinct parental roles of male and female marmosets through automated detections of food-sharing behaviors using a spatial-temporal filter on 3D poses. Employing a recurrent neural network to analyze 3D pose time series data during social interactions, we additionally discovered that marmosets adjusted their behaviors based on others' internal state, which is not directly observable but can be inferred from the sequence of others' actions. Moreover, a fully unsupervised approach enabled us to detect progressively appearing symptomatic behaviors over a year in a Parkinson's disease model. The high-throughput and versatile nature of an AI-driven approach to analyze natural behaviors will open a new avenue for neuroscience research dealing with big-data analyses of social and pathophysiological behaviors in NHPs.

19.
ACS Sens ; 8(7): 2598-2608, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37357775

RESUMO

We developed a multichannel wireless quartz-crystal-microbalance (QCM) biosensor for mechanically studying the on-surface aggregation reaction of α-synuclein (α-syn). We find a quite unusual change in the resonant frequency that eventually exceeds the baseline, which has never been observed during seeding aggregation reaction. By incorporating a growth-to-percolation theory for fibril elongation reaction, we have favorably reproduced this unusual response and found that it can be explained only with formation of an ultrastiff fibril network. We also find that the stiffness of the fibril network grown from artificially prepared twist-type seeds is significantly higher than that from rod-type seeds. Furthermore, the stiffnesses of fibril networks grown from seeds derived from brain tissues of Parkinson's disease (PD) and multiple system atrophy (MSA) patients show a very similar trend to those of rod and twist seeds, respectively, indicating that fibrils from MSA patients are stiffer than those from PD.


Assuntos
Técnicas Biossensoriais , Doença de Parkinson , Humanos , alfa-Sinucleína , Quartzo , Amiloide
20.
NPJ Parkinsons Dis ; 9(1): 139, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770475

RESUMO

α-Synuclein (αS), the causative protein of Parkinson's disease and other α-synucleinopathies, aggregates from a low molecular weight form (LMW-αS) to a high molecular weight αS oligomer (HMW-αSo). Aggregated αS accumulates intracellularly, induces intrinsic apoptosis, is released extracellularly, and appears to propagate disease through prion-like spreading. Whether extracellular αS aggregates are cytotoxic, damage cell wall, or induce cell death is unclear. We investigated cytotoxicity and cell death caused by HMW-αSo or LMW-αS. Extracellular HMW-αSo was more cytotoxic than LMW-αS and was a crucial factor for inducing plasma membrane damage and cell death. HMW-αSo induced reactive oxygen species production and phospholipid peroxidation in the membrane, thereby impairing calcium homeostasis and disrupting plasma membrane integrity. HMW-αSo also induced extrinsic apoptosis and cell death by activating acidic sphingomyelinase. Thus, as extracellular HMW-αSo causes neuronal injury and death via cellular transmission and direct plasma membrane damage, we propose an additional disease progression pathway for α-synucleinopathies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA