Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(31): 21065-21073, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525889

RESUMO

One approach for improving lithium transference in electrolytes is through the use of bulky multivalent anions. We have studied a multivalent salt containing a bulky star-shaped anion with a polyhedral oligomeric silsesquioxane (POSS) center and lithium counterions dissolved in a solvent. The charge on each anion, z-, is equal to -20. The self-diffusion coefficients of all species were measured by pulsed field gradient NMR (PFG-NMR). As expected, anion diffusion was significantly slower than cation diffusion. An approximate transference number, also referred to as the current fraction (measured by Bruce, Vincent and Watanabe method), was higher than those expected from PFG-NMR. However, the rigorously defined cation transference number with respect to the solvent velocity measured by electrophoretic NMR was negative at all salt concentrations. In contrast, the approximate transference numbers based on PFG-NMR and current fractions are always positive, as expected. The discrepancy between these three independent approaches for characterizing lithium transference suggests the presence of complex cation-anion interactions in solution. It is evident that the slow self-diffusion of bulky multivalent anions does not necessarily lead to an improvement of lithium transference.

2.
J Phys Chem A ; 127(34): 7228-7240, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37552562

RESUMO

The electronic quenching of NO(A2Σ+) with molecular partners occurs through complex non-adiabatic dynamics that occurs on multiple coupled potential energy surfaces. Moreover, the propensity for NO(A2Σ+) electronic quenching depends heavily on the strength and nature of the intermolecular interactions between NO(A2Σ+) and the molecular partner. In this paper, we explore the electronic quenching mechanisms of three systems: NO(A2Σ+) + CH4, NO(A2Σ+) + CH3OH, and NO(A2Σ+) + CO2. Using EOM-EA-CCSD calculations, we rationalize the very low electronic quenching cross-section of NO(A2Σ+) + CH4 as well as the outcomes observed in previous NO + CH4 photodissociation studies. Our analysis of NO(A2Σ+) + CH3OH suggests that it will undergo facile electronic quenching mediated by reducing the intermolecular distance and significantly stretching the O-H bond of CH3OH. For NO(A2Σ+) + CO2, intermolecular attractions lead to a series of low-energy ON-OCO conformations in which the CO2 is significantly bent. For both the NO(A2Σ+) + CH3OH and NO(A2Σ+) + CO2 systems, we see evidence of the harpoon mechanism and low-energy conical intersections between NO(A2Σ+) + M and NO(X2Π) + M. Overall, this work provides the first detailed theoretical study on the NO(A2Σ+) + M potential energy surface of each of these systems and will inform future velocity map imaging experiments.

3.
J Phys Chem B ; 126(47): 9893-9900, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383474

RESUMO

Molecular dynamics (MD) simulations, density functional theory (DFT) calculations, and 1H NMR spectroscopy were performed to gain a complementary understanding of the concentrated Li-ion electrolyte system, lithium bis(trifluoromethanesulfonyl)imide (Li[TFSI]) dissolved in tetraglyme. The computational methods provided the concentration dependence of differing solvation structure motifs by reference to changes in the corresponding NMR spectra. By combining both the computational and experimental methodologies, we show that the various solvation structures, dominated by the coordination between the tetraglyme (G4) solvent and lithium cation, directly influence the chemical shift separation of resonances in the 1H NMR spectra of the solvent. Thus, the 1H NMR spectra can be used to predict the fraction of tetraglyme involved in the solvation process, with quantitative agreement with solvation fraction predictions from MD simulation snapshots. Overall, our results demonstrate the reliability of a hybrid computational and experimental methodology to understand the solvation structure and hence transport mechanism of LiTFSI-G4 electrolytes in the low concentration region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA