Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Psychophysiology ; 61(4): e14488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37986190

RESUMO

Post-traumatic stress disorder (PTSD) is an independent risk factor for developing heart failure; however, the underlying cardiac mechanisms are still elusive. This study aims to evaluate the real-time effects of experimentally induced PTSD symptom activation on various cardiac contractility and autonomic measures. We recorded synchronized electrocardiogram and impedance cardiogram from 137 male veterans (17 PTSD, 120 non-PTSD; 48 twin pairs, 41 unpaired singles) during a laboratory-based traumatic reminder stressor. To identify the parameters describing the cardiac mechanisms by which trauma reminders can create stress on the heart, we utilized a feature selection mechanism along with a random forest classifier distinguishing PTSD and non-PTSD. We extracted 99 parameters, including 76 biosignal-based and 23 sociodemographic, medical history, and psychiatric diagnosis features. A subject/twin-wise stratified nested cross-validation procedure was used for parameter tuning and model assessment to identify the important parameters. The identified parameters included biomarkers such as pre-ejection period, acceleration index, velocity index, Heather index, and several physiology-agnostic features. These identified parameters during trauma recall suggested a combination of increased sympathetic nervous system (SNS) activity and deteriorated cardiac contractility that may increase the heart failure risk for PTSD. This indicates that the PTSD symptom activation associates with real-time reductions in several cardiac contractility measures despite SNS activation. This finding may be useful in future cardiac prevention efforts.


Assuntos
Insuficiência Cardíaca , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Impedância Elétrica , Rememoração Mental/fisiologia , Gêmeos , Veteranos/psicologia
2.
Psychophysiology ; 60(3): e14197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36285491

RESUMO

Post-traumatic stress disorder (PTSD) is an independent risk factor for incident heart failure, but the underlying cardiac mechanisms remained elusive. Impedance cardiography (ICG), especially when measured during stress, can help understand the underlying psychophysiological pathways linking PTSD with heart failure. We investigated the association between PTSD and ICG-based contractility metrics (pre-ejection period (PEP) and Heather index (HI)) using a controlled twin study design with a laboratory-based traumatic reminder stressor. PTSD status was assessed using structured clinical interviews. We acquired synchronized electrocardiograms and ICG data while playing personalized-trauma scripts. Using linear mixed-effects models, we examined twins as individuals and within PTSD-discordant pairs. We studied 137 male veterans (48 pairs, 41 unpaired singles) from Vietnam War Era with a mean (standard deviation) age of 68.5(2.5) years. HI during trauma stress was lower in the PTSD vs. non-PTSD individuals (7.2 vs. 9.3 [ohm/s2 ], p = .003). PEP reactivity (trauma minus neutral) was also more negative in PTSD vs. non-PTSD individuals (-7.4 vs. -2.0 [ms], p = .009). The HI and PEP associations with PTSD persisted for adjusted models during trauma and reactivity, respectively. For within-pair analysis of eight PTSD-discordant twin pairs (out of 48 pairs), PTSD was associated with lower HI in neutral, trauma, and reactivity, whereas no association was found between PTSD and PEP. PTSD was associated with reduced HI and PEP, especially with trauma recall stress. This combination of increased sympathetic activation and decreased cardiac contractility combined may be concerning for increased heart failure risk after recurrent trauma re-experiencing in PTSD.


Assuntos
Insuficiência Cardíaca , Transtornos de Estresse Pós-Traumáticos , Veteranos , Humanos , Masculino , Idoso , Transtornos de Estresse Pós-Traumáticos/complicações , Impedância Elétrica , Gêmeos , Insuficiência Cardíaca/complicações
3.
IEEE Sens J ; 23(22): 28390-28398, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38962278

RESUMO

Body motion tracking for medical applications has the potential to improve quality of life for people with physical or speech motor disorders. Current solutions available in the market are either inaccurate, not affordable, or are impractical for a medical setting or at home. Magnetic localization can address these issues thanks to its high accuracy, simplicity of use, wearability, and use of inexpensive sensors such as magnetometers. However, sources of unreliability affect magnetometers to such an extent that the localization model trained in a controlled environment might exhibit poor tracking accuracy when deployed to end users. Traditional magnetic calibration methods, such as ellipsoid fit (EF), do not sufficiently attenuate the effect of these sources of unreliability to reach a positional accuracy that is both consistent and satisfactory for our target applications. To improve reliability, we developed a calibration method called post-deployment input space transformation (PDIST) that reduces the distribution shift in the magnetic measurements between model training and deployment. In this paper, we focused on change in magnetization or magnetometer as sources of unreliability. Our results show that PDIST performs better than EF in decreasing positional errors by a factor of ~3 when magnetization is distorted, and up to ~7 when our localization model is tested on a different magnetometer than the one it was trained with. Furthermore, PDIST is shown to perform reliably by providing consistent results across all our data collection that tested various combinations of the sources of unreliability.

4.
J Oral Maxillofac Surg ; 80(9): 1466-1473, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35724734

RESUMO

PURPOSE: Articulation of the temporomandibular joint (TMJ) generates sounds with specific characteristics known as joint acoustic emissions (AEs). The purpose of this project was to determine if AEs as described by the joint health score (JHS) in children with juvenile idiopathic arthritis (JIA) differ from AEs in healthy children. METHODS: The investigators implemented a cross-sectional study with age- and sex-matched controls to compare AEs from 4 groups: (1) healthy subjects without TMJ sounds, (2) healthy subjects with TMJ sounds, (3) subjects with JIA without TMJ sounds, and (4) subjects with TMJ sounds. Predictor variables were JIA status (ie JIA/healthy) and joint sounds (present/absent). The outcome variable was AEs. Subjects wore a specialized headset and performed specific jaw movements that generated AEs. AEs were recorded and analyzed using an aggregated decision tree classification model that calculates a JHS for each group. JHSs were compared using a receiver operating characteristic curve and classification accuracies. The study team used a 2-tailed unpaired t-test to determine if score distributions were different. Significance was P < .05. RESULTS: A total of 51 subjects (102 TMJs; 37 females) with an average age of 13.1 years (range, 7 to 18) participated. Children with JIA and TMJ sounds had AEs with large repetitive clicks. Children with JIA without sounds had smaller repetitive clicks. Healthy children had grinding sounds with lower amplitude. The receiver operating characteristic curve had a classification accuracy of 71.6%. This accuracy compares against the gold standard clinical assessment for placing these patients into their groups (JIA vs healthy). JHSs of children with TMJ sounds and children with JIA and TMJ sounds were statistically significant (P < .0001). CONCLUSION: In our sample, the AE of TMJs in healthy children may be different than that in children with JIA. Assessment of an AE is a promising and noninvasive technique to determine involvement of TMJs in children with JIA.


Assuntos
Artrite Juvenil , Transtornos da Articulação Temporomandibular , Acústica , Adolescente , Criança , Estudos Transversais , Feminino , Humanos , Imageamento por Ressonância Magnética , Articulação Temporomandibular
5.
IEEE Sens J ; 22(18): 18093-18103, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37091042

RESUMO

The current COVID-19 pandemic highlights the critical importance of ubiquitous respiratory health monitoring. The two fundamental elements of monitoring respiration are respiration rate (the frequency of breathing) and tidal volume (TV, the volume of air breathed by the lungs in each breath). Wearable sensing systems have been demonstrated to provide accurate measurement of respiration rate, but TV remains challenging to measure accurately with wearable and unobtrusive technology. In this work, we leveraged electrocardiogram (ECG) and seismocardiogram (SCG) measurements obtained with a custom wearable sensing patch to derive an estimate of TV from healthy human participants. Specifically, we fused both ECG-derived and SCG-derived respiratory signals (EDR and SDR) and trained a machine learning model with gas rebreathing as the ground truth to estimate TV. The respiration cycle modulates ECG and SCG signals in multiple different ways that are synergistic. Thus, here we extract EDRs and SDRs using a multitude of different demodulation techniques. The extracted features are used to train a subject independent machine learning model to accurately estimate TV. By fusing the extracted EDRs and SDRs, we were able to estimate the TV with a root-mean-square error (RMSE) of 181.45 mL and Pearson correlation coefficient (r) of 0.61, with a global subject-independent model. We further show that SDRs are better TV estimators than EDRs. Among SDRs, amplitude modulated (AM) SCG features are the most correlated to TV. We demonstrated that fusing EDRs and SDRs can result in moderately accurate estimation of TV using a subject-independent model. Additionally, we highlight the most informative features for estimating TV. This work presents a significant step towards achieving continuous, calibration free, and unobtrusive TV estimation, which could advance the state of the art in wearable respiratory monitoring.

6.
Sensors (Basel) ; 22(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35062401

RESUMO

Hypovolemia is a physiological state of reduced blood volume that can exist as either (1) absolute hypovolemia because of a lower circulating blood (plasma) volume for a given vascular space (dehydration, hemorrhage) or (2) relative hypovolemia resulting from an expanded vascular space (vasodilation) for a given circulating blood volume (e.g., heat stress, hypoxia, sepsis). This paper examines the physiology of hypovolemia and its association with health and performance problems common to occupational, military and sports medicine. We discuss the maturation of individual-specific compensatory reserve or decompensation measures for future wearable sensor systems to effectively manage these hypovolemia problems. The paper then presents areas of future work to allow such technologies to translate from lab settings to use as decision aids for managing hypovolemia. We envision a future that incorporates elements of the compensatory reserve measure with advances in sensing technology and multiple modalities of cardiovascular sensing, additional contextual measures, and advanced noise reduction algorithms into a fully wearable system, creating a robust and physiologically sound approach to manage physical work, fatigue, safety and health issues associated with hypovolemia for workers, warfighters and athletes in austere conditions.


Assuntos
Militares , Medicina Esportiva , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Hipovolemia/diagnóstico , Aprendizado de Máquina
7.
Sensors (Basel) ; 22(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214238

RESUMO

This paper presents a novel computational algorithm to estimate blood volume decompensation state based on machine learning (ML) analysis of multi-modal wearable-compatible physiological signals. To the best of our knowledge, our algorithm may be the first of its kind which can not only discriminate normovolemia from hypovolemia but also classify hypovolemia into absolute hypovolemia and relative hypovolemia. We realized our blood volume classification algorithm by (i) extracting a multitude of features from multi-modal physiological signals including the electrocardiogram (ECG), the seismocardiogram (SCG), the ballistocardiogram (BCG), and the photoplethysmogram (PPG), (ii) constructing two ML classifiers using the features, one to classify normovolemia vs. hypovolemia and the other to classify hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) sequentially integrating the two to enable multi-class classification (normovolemia, absolute hypovolemia, and relative hypovolemia). We developed the blood volume decompensation state classification algorithm using the experimental data collected from six animals undergoing normovolemia, relative hypovolemia, and absolute hypovolemia challenges. Leave-one-subject-out analysis showed that our classification algorithm achieved an F1 score and accuracy of (i) 0.93 and 0.89 in classifying normovolemia vs. hypovolemia, (ii) 0.88 and 0.89 in classifying hypovolemia into absolute hypovolemia and relative hypovolemia, and (iii) 0.77 and 0.81 in classifying the overall blood volume decompensation state. The analysis of the features embedded in the ML classifiers indicated that many features are physiologically plausible, and that multi-modal SCG-BCG fusion may play an important role in achieving good blood volume classification efficacy. Our work may complement existing computational algorithms to estimate blood volume compensatory reserve as a potential decision-support tool to provide guidance on context-sensitive hypovolemia therapeutic strategy.


Assuntos
Hemorragia , Dispositivos Eletrônicos Vestíveis , Algoritmos , Animais , Volume Sanguíneo/fisiologia , Hipovolemia/diagnóstico , Aprendizado de Máquina
8.
Sensors (Basel) ; 22(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35161876

RESUMO

Heart failure (HF) exacerbations, characterized by pulmonary congestion and breathlessness, require frequent hospitalizations, often resulting in poor outcomes. Current methods for tracking lung fluid and respiratory distress are unable to produce continuous, holistic measures of cardiopulmonary health. We present a multimodal sensing system that captures bioimpedance spectroscopy (BIS), multi-channel lung sounds from four contact microphones, multi-frequency impedance pneumography (IP), temperature, and kinematics to track changes in cardiopulmonary status. We first validated the system on healthy subjects (n = 10) and then conducted a feasibility study on patients (n = 14) with HF in clinical settings. Three measurements were taken throughout the course of hospitalization, and parameters relevant to lung fluid status-the ratio of the resistances at 5 kHz to those at 150 kHz (K)-and respiratory timings (e.g., respiratory rate) were extracted. We found a statistically significant increase in K (p < 0.05) from admission to discharge and observed respiratory timings in physiologically plausible ranges. The IP-derived respiratory signals and lung sounds were sensitive enough to detect abnormal respiratory patterns (Cheyne-Stokes) and inspiratory crackles from patient recordings, respectively. We demonstrated that the proposed system is suitable for detecting changes in pulmonary fluid status and capturing high-quality respiratory signals and lung sounds in a clinical setting.


Assuntos
Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Humanos , Pulmão , Taxa Respiratória , Sons Respiratórios/diagnóstico
9.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408255

RESUMO

The application of artificial intelligence (AI) has provided new capabilities to develop advanced medical monitoring sensors for detection of clinical conditions of low circulating blood volume such as hemorrhage. The purpose of this study was to compare for the first time the discriminative ability of two machine learning (ML) algorithms based on real-time feature analysis of arterial waveforms obtained from a non-invasive continuous blood pressure system (Finometer®) signal to predict the onset of decompensated shock: the compensatory reserve index (CRI) and the compensatory reserve metric (CRM). One hundred ninety-one healthy volunteers underwent progressive simulated hemorrhage using lower body negative pressure (LBNP). The least squares means and standard deviations for each measure were assessed by LBNP level and stratified by tolerance status (high vs. low tolerance to central hypovolemia). Generalized Linear Mixed Models were used to perform repeated measures logistic regression analysis by regressing the onset of decompensated shock on CRI and CRM. Sensitivity and specificity were assessed by calculation of receiver-operating characteristic (ROC) area under the curve (AUC) for CRI and CRM. Values for CRI and CRM were not distinguishable across levels of LBNP independent of LBNP tolerance classification, with CRM ROC AUC (0.9268) being statistically similar (p = 0.134) to CRI ROC AUC (0.9164). Both CRI and CRM ML algorithms displayed discriminative ability to predict decompensated shock to include individual subjects with varying levels of tolerance to central hypovolemia. Arterial waveform feature analysis provides a highly sensitive and specific monitoring approach for the detection of ongoing hemorrhage, particularly for those patients at greatest risk for early onset of decompensated shock and requirement for implementation of life-saving interventions.


Assuntos
Inteligência Artificial , Hipovolemia , Algoritmos , Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Frequência Cardíaca/fisiologia , Hemodinâmica , Hemorragia/diagnóstico , Humanos , Hipovolemia/diagnóstico , Aprendizado de Máquina
10.
Psychosom Med ; 83(9): 969-977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292205

RESUMO

OBJECTIVE: Posttraumatic stress disorder (PTSD) is a disabling condition affecting a large segment of the population; however, current treatment options have limitations. New interventions that target the neurobiological alterations underlying symptoms of PTSD could be highly beneficial. Transcutaneous cervical (neck) vagal nerve stimulation (tcVNS) has the potential to represent such an intervention. The goal of this study was to determine the effects of tcVNS on neural responses to reminders of traumatic stress in PTSD. METHODS: Twenty-two participants were randomized to receive either sham (n = 11) or active (n = 11) tcVNS stimulation in conjunction with exposure to neutral and personalized traumatic stress scripts with high-resolution positron emission tomography scanning with radiolabeled water for brain blood flow measurements. RESULTS: Compared with sham, tcVNS increased brain activations during trauma scripts (p < .005) within the bilateral frontal and temporal lobes, left hippocampus, posterior cingulate, and anterior cingulate (dorsal and pregenual), and right postcentral gyrus. Greater deactivations (p < .005) with tcVNS were observed within the bilateral frontal and parietal lobes and left thalamus. Compared with tcVNS, sham elicited greater activations (p < .005) in the bilateral frontal lobe, left precentral gyrus, precuneus, and thalamus, and right temporal and parietal lobes, hippocampus, insula, and posterior cingulate. Greater (p < .005) deactivations were observed with sham in the right temporal lobe, posterior cingulate, hippocampus, left anterior cingulate, and bilateral cerebellum. CONCLUSIONS: tcVNS increased anterior cingulate and hippocampus activation during trauma scripts, potentially indicating a reversal of neurobiological changes with PTSD consistent with improved autonomic control.Trial Registration: No. NCT02992899.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Estimulação do Nervo Vago , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/terapia , Estimulação do Nervo Vago/métodos
11.
IEEE Sens J ; 21(6): 7964-7971, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33746627

RESUMO

Permanent magnet localization (PML) is designed for applications requiring non-line-of-sight motion tracking with millimetric accuracy. Current PML-based tongue tracking is not only impractical for daily use due to many sensors being placed around the mouth, but also requires a large training set of tracer motion. Our method was designed to overcome these shortcomings by generating a local magnetic field and removing the need for the localization to be trained with tracer rotations. An inertial measurement unit (IMU) is used as a tracer that moves in a local magnetic field generated by a magnet strip. The magnetic strength can be optimized to enable the strip to be placed further away from the tracer, thus hidden from view. The tracer is small (6×6×0.8 mm3) to reduce hindrance to natural tongue movements, and the strip is designed to be worn as a neckband. The IMU's magnetometer measures the local magnetic field which is compensated for the tracer's orientation by using the IMU's accelerometer and gyroscope. The orientation-compensated magnetic measurements are then fed into a localization algorithm that estimates the tracer's 3D position. The objective of this study is to evaluate the tracking accuracy of our method. In a 8×8×5 cm3 volume, positional errors of 1.6 mm (median) and 2.4 mm (third quartile, Q3) were achieved on a tracer being rotated ±50° along both pitch and roll. These results indicate this technology is promising for tongue tracking applications.

12.
IEEE Sens J ; 21(12): 13676-13684, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34658673

RESUMO

We present a new method for quantifying signal quality of joint acoustic emissions (JAEs) from the knee during unloaded flexion/extension (F/E) exercises. For ten F/E cycles, JAEs were recorded, in a clinical setting, from 34 healthy knees and 13 with a meniscus tear (n=24 subjects). The recordings were first segmented by F/E cycle and described using time and frequency domain features. Using these features, a symmetric k-nearest neighbor graph was created and described using a spectral embedding. We show how the underlying community structure of JAEs was comparable across joint health levels and was highly affected by artifacts. Each F/E cycle was scored by its distance from a diverse set of manually annotated, clean templates and removed if above the artifact threshold. We validate this methodology by showing an improvement in the distinction between the JAEs of healthy and injured knees. Graph community factor (GCF) was used to detect the number of communities in each recording and describe the heterogeneity of JAEs from each knee. Before artifact removal, there was no significant difference between the healthy and injured groups due to the impact of artifacts on the community construction. Following implementation of artifact removal, we observed improvement in knee health classification. The GCF value for the meniscus tear group was significantly higher than the healthy group (p<0.01). With more JAE recordings being taken in the clinic and at home, this paper addresses the need for a robust artifact removal method which is necessary for an accurate description of joint health.

13.
J Vib Acoust ; 143(3): 031006, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168416

RESUMO

In this study, we propose a new mounting method to improve accelerometer sensing performance in the 50 Hz-10 kHz frequency band for knee sound measurement. The proposed method includes a thin double-sided adhesive tape for mounting and a 3D-printed custom-designed backing prototype. In our mechanical setup with an electrodynamic shaker, the measurements showed a 13 dB increase in the accelerometer's sensing performance in the 1-10 kHz frequency band when it is mounted with the craft tape under 2 N backing force applied through low-friction tape. As a proof-of-concept study, knee sounds of healthy subjects (n = 10) were recorded. When the backing force was applied, we observed statistically significant (p < 0.01) incremental changes in spectral centroid, spectral roll-off frequencies, and high-frequency (1-10 kHz) root-mean-square (RMS) acceleration, while low-frequency (50 Hz-1 kHz) RMS acceleration remained unchanged. The mean spectral centroid and spectral roll-off frequencies increased from 0.8 kHz and 4.15 kHz to 1.35 kHz and 5.9 kHz, respectively. The mean high-frequency acceleration increased from 0.45 mgRMS to 0.9 mgRMS with backing. We showed that the backing force improves the sensing performance of the accelerometer when mounted with the craft tape and the proposed backing prototype. This new method has the potential to be implemented in today's wearable systems to improve the sensing performance of accelerometers in knee sound measurements.

14.
J Card Fail ; 26(11): 948-958, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32473379

RESUMO

BACKGROUND: To estimate oxygen uptake (VO2) from cardiopulmonary exercise testing (CPX) using simultaneously recorded seismocardiogram (SCG) and electrocardiogram (ECG) signals captured with a small wearable patch. CPX is an important risk stratification tool for patients with heart failure (HF) owing to the prognostic value of the features derived from the gas exchange variables such as VO2. However, CPX requires specialized equipment, as well as trained professionals to conduct the study. METHODS AND RESULTS: We have conducted a total of 68 CPX tests on 59 patients with HF with reduced ejection fraction (31% women, mean age 55 ± 13 years, ejection fraction 0.27 ± 0.11, 79% stage C). The patients were fitted with a wearable sensing patch and underwent treadmill CPX. We divided the dataset into a training-testing set (n = 44) and a separate validation set (n = 24). We developed globalized (population) regression models to estimate VO2 from the SCG and ECG signals measured continuously with the patch. We further classified the patients as stage D or C using the SCG and ECG features to assess the ability to detect clinical state from the wearable patch measurements alone. We developed the regression and classification model with cross-validation on the training-testing set and validated the models on the validation set. The regression model to estimate VO2 from the wearable features yielded a moderate correlation (R2 of 0.64) with a root mean square error of 2.51 ± 1.12 mL · kg-1 · min-1 on the training-testing set, whereas R2 and root mean square error on the validation set were 0.76 and 2.28 ± 0.93 mL · kg-1 · min-1, respectively. Furthermore, the classification of clinical state yielded accuracy, sensitivity, specificity, and an area under the receiver operating characteristic curve values of 0.84, 0.91, 0.64, and 0.74, respectively, for the training-testing set, and 0.83, 0.86, 0.67, and 0.92, respectively, for the validation set. CONCLUSIONS: Wearable SCG and ECG can assess CPX VO2 and thereby classify clinical status for patients with HF. These methods may provide value in the risk stratification of patients with HF by tracking cardiopulmonary parameters and clinical status outside of specialized settings, potentially allowing for more frequent assessments to be performed during longitudinal monitoring and treatment.


Assuntos
Insuficiência Cardíaca , Dispositivos Eletrônicos Vestíveis , Teste de Esforço , Feminino , Insuficiência Cardíaca/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio , Consumo de Oxigênio , Volume Sistólico
15.
J Nerv Ment Dis ; 208(3): 171-180, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32091470

RESUMO

Da Costa originally described Soldier's Heart in the 19th Century as a syndrome that occurred on the battlefield in soldiers of the American Civil War. Soldier's Heart involved symptoms similar to modern day posttraumatic stress disorder (PTSD) as well as exaggerated cardiovascular reactivity felt to be related to an abnormality of the heart. Interventions were appropriately focused on the cardiovascular system. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were relegated to the unconscious. Later, the physiology of PTSD and other psychiatric disorders was conceived as solely residing in the brain. More recently, advances in psychosomatic medicine led to the recognition of mind-body relationships and the involvement of multiple physiological systems in the etiology of disorders, including stress, depression PTSD, and cardiovascular disease, has moved to the fore, and has renewed interest in the validity of the original model of the Soldier's Heart syndrome.


Assuntos
Guerra Civil Norte-Americana , Doenças Cardiovasculares/história , Militares/história , Transtornos de Estresse Pós-Traumáticos/história , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/psicologia , História do Século XIX , Humanos , Militares/psicologia , Transtornos de Estresse Pós-Traumáticos/etiologia , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Transtornos de Estresse Pós-Traumáticos/psicologia , Estados Unidos
16.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322391

RESUMO

We developed a prototype for measuring physiological data for pulse transit time (PTT) estimation that will be used for ambulatory blood pressure (BP) monitoring. The device is comprised of an embedded system with multimodal sensors that streams high-throughput data to a custom Android application. The primary focus of this paper is on the hardware-software codesign that we developed to address the challenges associated with reliably recording data over Bluetooth on a resource-constrained platform. In particular, we developed a lossless compression algorithm that is based on optimally selective Huffman coding and Huffman prefixed coding, which yields virtually identical compression ratios to the standard algorithm, but with a 67-99% reduction in the size of the compression tables. In addition, we developed a hybrid software-hardware flow control method to eliminate microcontroller (MCU) interrupt-latency related data loss when multi-byte packets are sent from the phone to the embedded system via a Bluetooth module at baud rates exceeding 115,200 bit/s. The empirical error rate obtained with the proposed method with the baud rate set to 460,800 bit/s was identically equal to 0%. Our robust and computationally efficient physiological data acquisition system will enable field experiments that will drive the development of novel algorithms for PTT-based continuous BP monitoring.


Assuntos
Monitorização Ambulatorial da Pressão Arterial/instrumentação , Compressão de Dados , Algoritmos , Pressão Sanguínea , Humanos , Análise de Onda de Pulso , Software
17.
Sensors (Basel) ; 20(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751438

RESUMO

Joint acoustic emission (JAE) sensing has recently proven to be a viable technique for non-invasive quantification indicating knee joint health. In this work, we adapt the acoustic emission sensing method to measure the JAEs of the wrist-another joint commonly affected by injury and degenerative disease. JAEs of seven healthy volunteers were recorded during wrist flexion-extension and rotation with sensitive uniaxial accelerometers placed at eight locations around the wrist. The acoustic data were bandpass filtered (150 Hz-20 kHz). The signal-to-noise ratio (SNR) was used to quantify the strength of the JAE signals in each recording. Then, nine audio features were extracted, and the intraclass correlation coefficient (ICC) (model 3,k), coefficients of variability (CVs), and Jensen-Shannon (JS) divergence were calculated to evaluate the interrater repeatability of the signals. We found that SNR ranged from 4.1 to 9.8 dB, intrasession and intersession ICC values ranged from 0.629 to 0.886, CVs ranged from 0.099 to 0.241, and JS divergence ranged from 0.18 to 0.20, demonstrating high JAE repeatability and signal strength at three locations. The volunteer sample size is not large enough to represent JAE analysis of a larger population, but this work will lay a foundation for future work in using wrist JAEs to aid in diagnosis and treatment tracking of musculoskeletal pathologies and injury in wearable systems.


Assuntos
Acústica , Dispositivos Eletrônicos Vestíveis , Articulação do Punho , Punho , Acelerometria , Humanos , Projetos Piloto , Reprodutibilidade dos Testes
18.
Sensors (Basel) ; 20(15)2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32722389

RESUMO

Injuries and disorders affecting the knee joint are very common in athletes and older individuals. Passive and active vibration methods, such as acoustic emissions and modal analysis, are extensively used in both industry and the medical field to diagnose structural faults and disorders. To maximize the diagnostic potential of such vibration methods for knee injuries and disorders, a better understanding of the vibroacoustic characteristics of the knee must be developed. In this study, the linearity and vibration transmissibility of the human knee were investigated based on measurements collected on healthy subjects. Different subjects exhibit a substantially different transmissibility behavior due to variances in subject-specific knee structures. Moreover, the vibration behaviors of various subjects' knees at different leg positions were compared. Variation in sagittal-plane knee angle alters the transmissibility of the joint, while the overall shape of the transmissibility diagrams remains similar. The results demonstrate that an adjusted stimulation signal at frequencies higher than 3 kHz has the potential to be employed in diagnostic applications that are related to knee joint health. This work can pave the way for future studies aimed at employing acoustic emission and modal analysis approaches for knee health monitoring outside of clinical settings, such as for field-deployable diagnostics.


Assuntos
Traumatismos do Joelho , Vibração , Humanos , Joelho , Articulação do Joelho , Modalidades de Fisioterapia
19.
Sensors (Basel) ; 20(22)2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182638

RESUMO

Vital signs historically served as the primary method to triage patients and resources for trauma and emergency care, but have failed to provide clinically-meaningful predictive information about patient clinical status. In this review, a framework is presented that focuses on potential wearable sensor technologies that can harness necessary electronic physiological signal integration with a current state-of-the-art predictive machine-learning algorithm that provides early clinical assessment of hypovolemia status to impact patient outcome. The ability to study the physiology of hemorrhage using a human model of progressive central hypovolemia led to the development of a novel machine-learning algorithm known as the compensatory reserve measurement (CRM). Greater sensitivity, specificity, and diagnostic accuracy to detect hemorrhage and onset of decompensated shock has been demonstrated by the CRM when compared to all standard vital signs and hemodynamic variables. The development of CRM revealed that continuous measurements of changes in arterial waveform features represented the most integrated signal of physiological compensation for conditions of reduced systemic oxygen delivery. In this review, detailed analysis of sensor technologies that include photoplethysmography, tonometry, ultrasound-based blood pressure, and cardiogenic vibration are identified as potential candidates for harnessing arterial waveform analog features required for real-time calculation of CRM. The integration of wearable sensors with the CRM algorithm provides a potentially powerful medical monitoring advancement to save civilian and military lives in emergency medical settings.


Assuntos
Hemorragia/diagnóstico , Hipovolemia , Monitorização Fisiológica/instrumentação , Dispositivos Eletrônicos Vestíveis , Ferimentos e Lesões/diagnóstico , Algoritmos , Hemodinâmica , Humanos , Hipovolemia/diagnóstico
20.
IEEE Sens J ; 19(19): 8522-8531, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33312073

RESUMO

Human-computer interaction (HCI) technology, and the automatic classification of a person's mental state, are of interest to multiple industries. In this work, the fusion of sensing modalities that monitor the oxygenation of the human prefrontal cortex (PFC) and cardiovascular physiology was evaluated to differentiate between rest, mental arithmetic and N-back memory tasks. A flexible headband to measure near-infrared spectroscopy (NIRS) for quantifying PFC oxygenation, and forehead photoplethysmography (PPG) for assessing peripheral cardiovascular activity was designed. Physiological signals such as the electrocardiogram (ECG) and seismocardiogram (SCG) were collected, along with the measurements obtained using the headband. The setup was tested and validated with a total of 16 human subjects performing a series of arithmetic and N-back memory tasks. Features extracted were related to cardiac and peripheral sympathetic activity, vasomotor tone, pulse wave propagation, and oxygenation. Machine learning techniques were utilized to classify rest, arithmetic, and N-back tasks, using leave-one-subject-out cross validation. Macro-averaged accuracy of 85%, precision of 84%, recall rate of 83%, and F1 score of 80% were obtained from the classification of the three states. Statistical analyses on the subject-based results demonstrate that the fusion of NIRS and peripheral cardiovascular sensing significantly improves the accuracy, precision, recall, and F1 scores, compared to using NIRS sensing alone. Moreover, the fusion significantly improves the precision compared to peripheral cardiovascular sensing alone. The results of this work can be used in the future to design a multi-modal wearable sensing system for classifying mental state for applications such as acute stress detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA