Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3002120, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155704

RESUMO

In the search for the neural basis of conscious experience, perception and the cognitive processes associated with reporting perception are typically confounded as neural activity is recorded while participants explicitly report what they experience. Here, we present a novel way to disentangle perception from report using eye movement analysis techniques based on convolutional neural networks and neurodynamical analyses based on information theory. We use a bistable visual stimulus that instantiates two well-known properties of conscious perception: integration and differentiation. At any given moment, observers either perceive the stimulus as one integrated unitary object or as two differentiated objects that are clearly distinct from each other. Using electroencephalography, we show that measures of integration and differentiation based on information theory closely follow participants' perceptual experience of those contents when switches were reported. We observed increased information integration between anterior to posterior electrodes (front to back) prior to a switch to the integrated percept, and higher information differentiation of anterior signals leading up to reporting the differentiated percept. Crucially, information integration was closely linked to perception and even observed in a no-report condition when perceptual transitions were inferred from eye movements alone. In contrast, the link between neural differentiation and perception was observed solely in the active report condition. Our results, therefore, suggest that perception and the processes associated with report require distinct amounts of anterior-posterior network communication and anterior information differentiation. While front-to-back directed information is associated with changes in the content of perception when viewing bistable visual stimuli, regardless of report, frontal information differentiation was absent in the no-report condition and therefore is not directly linked to perception per se.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Retroalimentação , Movimentos Oculares , Percepção , Percepção Visual , Estimulação Luminosa
2.
J Neurosci ; 43(29): 5391-5405, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37369588

RESUMO

Models of visual cognition generally assume that brain networks predict the contents of a stimulus to facilitate its subsequent categorization. However, understanding prediction and categorization at a network level has remained challenging, partly because we need to reverse engineer their information processing mechanisms from the dynamic neural signals. Here, we used connectivity measures that can isolate the communications of a specific content to reconstruct these network mechanisms in each individual participant (N = 11, both sexes). Each was cued to the spatial location (left vs right) and contents [low spatial frequency (LSF) vs high spatial frequency (HSF)] of a predicted Gabor stimulus that they then categorized. Using each participant's concurrently measured MEG, we reconstructed networks that predict and categorize LSF versus HSF contents for behavior. We found that predicted contents flexibly propagate top down from temporal to lateralized occipital cortex, depending on task demands, under supervisory control of prefrontal cortex. When they reach lateralized occipital cortex, predictions enhance the bottom-up LSF versus HSF representations of the stimulus, all the way from occipital-ventral-parietal to premotor cortex, in turn producing faster categorization behavior. Importantly, content communications are subsets (i.e., 55-75%) of the signal-to-signal communications typically measured between brain regions. Hence, our study isolates functional networks that process the information of cognitive functions.SIGNIFICANCE STATEMENT An enduring cognitive hypothesis states that our perception is partly influenced by the bottom-up sensory input but also by top-down expectations. However, cognitive explanations of the dynamic brain networks mechanisms that flexibly predict and categorize the visual input according to task-demands remain elusive. We addressed them in a predictive experimental design by isolating the network communications of cognitive contents from all other communications. Our methods revealed a Prediction Network that flexibly communicates contents from temporal to lateralized occipital cortex, with explicit frontal control, and an occipital-ventral-parietal-frontal Categorization Network that represents more sharply the predicted contents from the shown stimulus, leading to faster behavior. Our framework and results therefore shed a new light of cognitive information processing on dynamic brain activity.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Lobo Occipital , Encéfalo , Cognição , Estimulação Luminosa , Percepção Visual
3.
J Neurosci ; 42(11): 2344-2355, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35091504

RESUMO

Most perceptual decisions rely on the active acquisition of evidence from the environment involving stimulation from multiple senses. However, our understanding of the neural mechanisms underlying this process is limited. Crucially, it remains elusive how different sensory representations interact in the formation of perceptual decisions. To answer these questions, we used an active sensing paradigm coupled with neuroimaging, multivariate analysis, and computational modeling to probe how the human brain processes multisensory information to make perceptual judgments. Participants of both sexes actively sensed to discriminate two texture stimuli using visual (V) or haptic (H) information or the two sensory cues together (VH). Crucially, information acquisition was under the participants' control, who could choose where to sample information from and for how long on each trial. To understand the neural underpinnings of this process, we first characterized where and when active sensory experience (movement patterns) is encoded in human brain activity (EEG) in the three sensory conditions. Then, to offer a neurocomputational account of active multisensory decision formation, we used these neural representations of active sensing to inform a drift diffusion model of decision-making behavior. This revealed a multisensory enhancement of the neural representation of active sensing, which led to faster and more accurate multisensory decisions. We then dissected the interactions between the V, H, and VH representations using a novel information-theoretic methodology. Ultimately, we identified a synergistic neural interaction between the two unisensory (V, H) representations over contralateral somatosensory and motor locations that predicted multisensory (VH) decision-making performance.SIGNIFICANCE STATEMENT In real-world settings, perceptual decisions are made during active behaviors, such as crossing the road on a rainy night, and include information from different senses (e.g., car lights, slippery ground). Critically, it remains largely unknown how sensory evidence is combined and translated into perceptual decisions in such active scenarios. Here we address this knowledge gap. First, we show that the simultaneous exploration of information across senses (multi-sensing) enhances the neural encoding of active sensing movements. Second, the neural representation of active sensing modulates the evidence available for decision; and importantly, multi-sensing yields faster evidence accumulation. Finally, we identify a cross-modal interaction in the human brain that correlates with multisensory performance, constituting a putative neural mechanism for forging active multisensory perception.


Assuntos
Tomada de Decisões , Eletroencefalografia , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia
4.
PLoS Biol ; 18(8): e3000840, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845876

RESUMO

Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia). We demonstrate that, in typical readers, cortical representation of the phrasal content of SiN relates to the degree of development of the lexical (but not sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and the ability to benefit from visual speech to represent the syllabic content of SiN account for global reading performance (i.e., speed and accuracy of lexical and sublexical reading). In individuals with dyslexia, we found preserved integration of visual speech information to optimize processing of syntactic information but not to sustain acoustic/phonemic processing. Finally, within children with dyslexia, measures of cortical representation of the phrasal content of SiN were negatively related to reading speed and positively related to the compromise between reading precision and reading speed, potentially owing to compensatory attentional mechanisms. These results clarify the nature of the relation between SiN perception and reading abilities in typical child readers and children with dyslexia and identify novel electrophysiological markers of emergent literacy.


Assuntos
Córtex Cerebral/fisiologia , Ruído , Leitura , Fala/fisiologia , Comportamento , Criança , Dislexia/fisiopatologia , Humanos , Modelos Lineares , Neuroimagem , Fonética
5.
J Vis ; 23(5): 14, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37200046

RESUMO

Human decision-making and self-reflection often depend on context and internal biases. For instance, decisions are often influenced by preceding choices, regardless of their relevance. It remains unclear how choice history influences different levels of the decision-making hierarchy. We used analyses grounded in information and detection theories to estimate the relative strength of perceptual and metacognitive history biases and to investigate whether they emerge from common/unique mechanisms. Although both perception and metacognition tended to be biased toward previous responses, we observed novel dissociations that challenge normative theories of confidence. Different evidence levels often informed perceptual and metacognitive decisions within observers, and response history distinctly influenced first- (perceptual) and second- (metacognitive) order decision-parameters, with the metacognitive bias likely to be strongest and most prevalent in the general population. We propose that recent choices and subjective confidence represent heuristics, which inform first- and second-order decisions in the absence of more relevant evidence.


Assuntos
Metacognição , Humanos , Metacognição/fisiologia , Tomada de Decisões/fisiologia , Heurística
6.
Neuroimage ; 247: 118841, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34952232

RESUMO

When exposed to complementary features of information across sensory modalities, our brains formulate cross-modal associations between features of stimuli presented separately to multiple modalities. For example, auditory pitch-visual size associations map high-pitch tones with small-size visual objects, and low-pitch tones with large-size visual objects. Preferential, or congruent, cross-modal associations have been shown to affect behavioural performance, i.e. choice accuracy and reaction time (RT) across multisensory decision-making paradigms. However, the neural mechanisms underpinning such influences in perceptual decision formation remain unclear. Here, we sought to identify when perceptual improvements from associative congruency emerge in the brain during decision formation. In particular, we asked whether such improvements represent 'early' sensory processing benefits, or 'late' post-sensory changes in decision dynamics. Using a modified version of the Implicit Association Test (IAT), coupled with electroencephalography (EEG), we measured the neural activity underlying the effect of auditory stimulus-driven pitch-size associations on perceptual decision formation. Behavioural results showed that participants responded significantly faster during trials when auditory pitch was congruent, rather than incongruent, with its associative visual size counterpart. We used multivariate Linear Discriminant Analysis (LDA) to characterise the spatiotemporal dynamics of EEG activity underpinning IAT performance. We found an 'Early' component (∼100-110 ms post-stimulus onset) coinciding with the time of maximal discrimination of the auditory stimuli), and a 'Late' component (∼330-340 ms post-stimulus onset) underlying IAT performance. To characterise the functional role of these components in decision formation, we incorporated a neurally-informed Hierarchical Drift Diffusion Model (HDDM), revealing that the Late component decreases response caution, requiring less sensory evidence to be accumulated, whereas the Early component increased the duration of sensory-encoding processes for incongruent trials. Overall, our results provide a mechanistic insight into the contribution of 'early' sensory processing, as well as 'late' post-sensory neural representations of associative congruency to perceptual decision formation.


Assuntos
Tomada de Decisões/fisiologia , Eletroencefalografia , Estimulação Acústica , Adulto , Análise Discriminante , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estimulação Luminosa , Tempo de Reação/fisiologia
7.
Neuroimage ; 258: 119347, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660460

RESUMO

The reproducibility crisis in neuroimaging and in particular in the case of underpowered studies has introduced doubts on our ability to reproduce, replicate and generalize findings. As a response, we have seen the emergence of suggested guidelines and principles for neuroscientists known as Good Scientific Practice for conducting more reliable research. Still, every study remains almost unique in its combination of analytical and statistical approaches. While it is understandable considering the diversity of designs and brain data recording, it also represents a striking point against reproducibility. Here, we propose a non-parametric permutation-based statistical framework, primarily designed for neurophysiological data, in order to perform group-level inferences on non-negative measures of information encompassing metrics from information-theory, machine-learning or measures of distances. The framework supports both fixed- and random-effect models to adapt to inter-individuals and inter-sessions variability. Using numerical simulations, we compared the accuracy in ground-truth retrieving of both group models, such as test- and cluster-wise corrections for multiple comparisons. We then reproduced and extended existing results using both spatially uniform MEG and non-uniform intracranial neurophysiological data. We showed how the framework can be used to extract stereotypical task- and behavior-related effects across the population covering scales from the local level of brain regions, inter-areal functional connectivity to measures summarizing network properties. We also present an open-source Python toolbox called Frites1 that includes the proposed statistical pipeline using information-theoretic metrics such as single-trial functional connectivity estimations for the extraction of cognitive brain networks. Taken together, we believe that this framework deserves careful attention as its robustness and flexibility could be the starting point toward the uniformization of statistical approaches.


Assuntos
Mapeamento Encefálico , Encéfalo , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição , Humanos , Neuroimagem/métodos , Reprodutibilidade dos Testes
8.
Eur Arch Psychiatry Clin Neurosci ; 272(3): 437-448, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34401957

RESUMO

Schizophrenia is characterised by cognitive impairments that are already present during early stages, including in the clinical high-risk for psychosis (CHR-P) state and first-episode psychosis (FEP). Moreover, data suggest the presence of distinct cognitive subtypes during early-stage psychosis, with evidence for spared vs. impaired cognitive profiles that may be differentially associated with symptomatic and functional outcomes. Using cluster analysis, we sought to determine whether cognitive subgroups were associated with clinical and functional outcomes in CHR-P individuals. Data were available for 146 CHR-P participants of whom 122 completed a 6- and/or 12-month follow-up; 15 FEP participants; 47 participants not fulfilling CHR-P criteria (CHR-Ns); and 53 healthy controls (HCs). We performed hierarchical cluster analysis on principal components derived from neurocognitive and social cognitive measures. Within the CHR-P group, clusters were compared on clinical and functional variables and examined for associations with global functioning, persistent attenuated psychotic symptoms and transition to psychosis. Two discrete cognitive subgroups emerged across all participants: 45.9% of CHR-P individuals were cognitively impaired compared to 93.3% of FEP, 29.8% of CHR-N and 30.2% of HC participants. Cognitively impaired CHR-P participants also had significantly poorer functioning at baseline and follow-up than their cognitively spared counterparts. Specifically, cluster membership predicted functional but not clinical outcome. Our findings support the existence of distinct cognitive subgroups in CHR-P individuals that are associated with functional outcomes, with implications for early intervention and the understanding of underlying developmental processes.


Assuntos
Disfunção Cognitiva , Transtornos Psicóticos , Esquizofrenia , Análise por Conglomerados , Cognição , Disfunção Cognitiva/etiologia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico
9.
PLoS Biol ; 16(8): e2006558, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080855

RESUMO

Integration of multimodal sensory information is fundamental to many aspects of human behavior, but the neural mechanisms underlying these processes remain mysterious. For example, during face-to-face communication, we know that the brain integrates dynamic auditory and visual inputs, but we do not yet understand where and how such integration mechanisms support speech comprehension. Here, we quantify representational interactions between dynamic audio and visual speech signals and show that different brain regions exhibit different types of representational interaction. With a novel information theoretic measure, we found that theta (3-7 Hz) oscillations in the posterior superior temporal gyrus/sulcus (pSTG/S) represent auditory and visual inputs redundantly (i.e., represent common features of the two), whereas the same oscillations in left motor and inferior temporal cortex represent the inputs synergistically (i.e., the instantaneous relationship between audio and visual inputs is also represented). Importantly, redundant coding in the left pSTG/S and synergistic coding in the left motor cortex predict behavior-i.e., speech comprehension performance. Our findings therefore demonstrate that processes classically described as integration can have different statistical properties and may reflect distinct mechanisms that occur in different brain regions to support audiovisual speech comprehension.


Assuntos
Córtex Motor/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Adolescente , Adulto , Percepção Auditiva , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Compreensão/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Fala , Percepção Visual
10.
PLoS Comput Biol ; 16(10): e1008302, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33119593

RESUMO

Despite being the focus of a thriving field of research, the biological mechanisms that underlie information integration in the brain are not yet fully understood. A theory that has gained a lot of traction in recent years suggests that multi-scale integration is regulated by a hierarchy of mutually interacting neural oscillations. In particular, there is accumulating evidence that phase-amplitude coupling (PAC), a specific form of cross-frequency interaction, plays a key role in numerous cognitive processes. Current research in the field is not only hampered by the absence of a gold standard for PAC analysis, but also by the computational costs of running exhaustive computations on large and high-dimensional electrophysiological brain signals. In addition, various signal properties and analyses parameters can lead to spurious PAC. Here, we present Tensorpac, an open-source Python toolbox dedicated to PAC analysis of neurophysiological data. The advantages of Tensorpac include (1) higher computational efficiency thanks to software design that combines tensor computations and parallel computing, (2) the implementation of all most widely used PAC methods in one package, (3) the statistical analysis of PAC measures, and (4) extended PAC visualization capabilities. Tensorpac is distributed under a BSD-3-Clause license and can be launched on any operating system (Linux, OSX and Windows). It can be installed directly via pip or downloaded from Github (https://github.com/EtienneCmb/tensorpac). By making Tensorpac available, we aim to enhance the reproducibility and quality of PAC research, and provide open tools that will accelerate future method development in neuroscience.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/métodos , Fenômenos Eletrofisiológicos/fisiologia , Software , Humanos , Processamento de Sinais Assistido por Computador
11.
Neuroimage ; 218: 116994, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474082

RESUMO

Visual object recognition seems to occur almost instantaneously. However, not only does it require hundreds of milliseconds of processing, but our eyes also typically fixate the object for hundreds of milliseconds. Consequently, information reaching our eyes at different moments is processed in the brain together. Moreover, information received at different moments during fixation is likely to be processed differently, notably because different features might be selectively attended at different moments. Here, we introduce a novel reverse correlation paradigm that allows us to uncover with millisecond precision the processing time course of specific information received on the retina at specific moments. Using faces as stimuli, we observed that processing at several electrodes and latencies was different depending on the moment at which information was received. Some of these variations were caused by a disruption occurring 160-200 â€‹ms after the face onset, suggesting a role of the N170 ERP component in gating information processing; others hinted at temporal compression and integration mechanisms. Importantly, the observed differences were not explained by simple adaptation or repetition priming, they were modulated by the task, and they were correlated with differences in behavior. These results suggest that top-down routines of information sampling are applied to the continuous visual input, even within a single eye fixation.


Assuntos
Encéfalo/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
12.
Hum Brain Mapp ; 41(5): 1212-1225, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31782861

RESUMO

Fast and accurate face processing is critical for everyday social interactions, but it declines and becomes delayed with age, as measured by both neural and behavioral responses. Here, we addressed the critical challenge of understanding how aging changes neural information processing mechanisms to delay behavior. Young (20-36 years) and older (60-86 years) adults performed the basic social interaction task of detecting a face versus noise while we recorded their electroencephalogram (EEG). In each participant, using a new information theoretic framework we reconstructed the features supporting face detection behavior, and also where, when and how EEG activity represents them. We found that occipital-temporal pathway activity dynamically represents the eyes of the face images for behavior ~170 ms poststimulus, with a 40 ms delay in older adults that underlies their 200 ms behavioral deficit of slower reaction times. Our results therefore demonstrate how aging can change neural information processing mechanisms that underlie behavioral slow down.


Assuntos
Face , Envelhecimento Saudável , Tempo de Reação/fisiologia , Percepção Visual/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Processos Mentais , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Occipital/diagnóstico por imagem , Lobo Occipital/fisiologia , Interação Social , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Adulto Jovem
13.
Entropy (Basel) ; 20(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265331

RESUMO

The Partial Information Decomposition, introduced by Williams P. L. et al. (2010), provides a theoretical framework to characterize and quantify the structure of multivariate information sharing. A new method ( I dep ) has recently been proposed by James R. G. et al. (2017) for computing a two-predictor partial information decomposition over discrete spaces. A lattice of maximum entropy probability models is constructed based on marginal dependency constraints, and the unique information that a particular predictor has about the target is defined as the minimum increase in joint predictor-target mutual information when that particular predictor-target marginal dependency is constrained. Here, we apply the I dep approach to Gaussian systems, for which the marginally constrained maximum entropy models are Gaussian graphical models. Closed form solutions for the I dep PID are derived for both univariate and multivariate Gaussian systems. Numerical and graphical illustrations are provided, together with practical and theoretical comparisons of the I dep PID with the minimum mutual information partial information decomposition ( I mmi ), which was discussed by Barrett A. B. (2015). The results obtained using I dep appear to be more intuitive than those given with other methods, such as I mmi , in which the redundant and unique information components are constrained to depend only on the predictor-target marginal distributions. In particular, it is proved that the I mmi method generally produces larger estimates of redundancy and synergy than does the I dep method. In discussion of the practical examples, the PIDs are complemented by the use of tests of deviance for the comparison of Gaussian graphical models.

14.
Neuroimage ; 147: 32-42, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27903440

RESUMO

The timing of slow auditory cortical activity aligns to the rhythmic fluctuations in speech. This entrainment is considered to be a marker of the prosodic and syllabic encoding of speech, and has been shown to correlate with intelligibility. Yet, whether and how auditory cortical entrainment is influenced by the activity in other speech-relevant areas remains unknown. Using source-localized MEG data, we quantified the dependency of auditory entrainment on the state of oscillatory activity in fronto-parietal regions. We found that delta band entrainment interacted with the oscillatory activity in three distinct networks. First, entrainment in the left anterior superior temporal gyrus (STG) was modulated by beta power in orbitofrontal areas, possibly reflecting predictive top-down modulations of auditory encoding. Second, entrainment in the left Heschl's Gyrus and anterior STG was dependent on alpha power in central areas, in line with the importance of motor structures for phonological analysis. And third, entrainment in the right posterior STG modulated theta power in parietal areas, consistent with the engagement of semantic memory. These results illustrate the topographical network interactions of auditory delta entrainment and reveal distinct cross-frequency mechanisms by which entrainment can interact with different cognitive processes underlying speech perception.


Assuntos
Córtex Auditivo/fisiologia , Ritmo Delta/fisiologia , Lobo Frontal/fisiologia , Magnetoencefalografia , Lobo Parietal/fisiologia , Estimulação Acústica , Adulto , Ritmo alfa/fisiologia , Ritmo beta/fisiologia , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Ritmo Teta/fisiologia , Adulto Jovem
15.
Hum Brain Mapp ; 38(3): 1541-1573, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27860095

RESUMO

We begin by reviewing the statistical framework of information theory as applicable to neuroimaging data analysis. A major factor hindering wider adoption of this framework in neuroimaging is the difficulty of estimating information theoretic quantities in practice. We present a novel estimation technique that combines the statistical theory of copulas with the closed form solution for the entropy of Gaussian variables. This results in a general, computationally efficient, flexible, and robust multivariate statistical framework that provides effect sizes on a common meaningful scale, allows for unified treatment of discrete, continuous, unidimensional and multidimensional variables, and enables direct comparisons of representations from behavioral and brain responses across any recording modality. We validate the use of this estimate as a statistical test within a neuroimaging context, considering both discrete stimulus classes and continuous stimulus features. We also present examples of analyses facilitated by these developments, including application of multivariate analyses to MEG planar magnetic field gradients, and pairwise temporal interactions in evoked EEG responses. We show the benefit of considering the instantaneous temporal derivative together with the raw values of M/EEG signals as a multivariate response, how we can separately quantify modulations of amplitude and direction for vector quantities, and how we can measure the emergence of novel information over time in evoked responses. Open-source Matlab and Python code implementing the new methods accompanies this article. Hum Brain Mapp 38:1541-1573, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Teoria da Informação , Neuroimagem/métodos , Distribuição Normal , Simulação por Computador , Eletroencefalografia , Entropia , Humanos , Sensibilidade e Especificidade
17.
Cereb Cortex ; 26(11): 4123-4135, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27550865

RESUMO

A key to understanding visual cognition is to determine "where", "when", and "how" brain responses reflect the processing of the specific visual features that modulate categorization behavior-the "what". The N170 is the earliest Event-Related Potential (ERP) that preferentially responds to faces. Here, we demonstrate that a paradigmatic shift is necessary to interpret the N170 as the product of an information processing network that dynamically codes and transfers face features across hemispheres, rather than as a local stimulus-driven event. Reverse-correlation methods coupled with information-theoretic analyses revealed that visibility of the eyes influences face detection behavior. The N170 initially reflects coding of the behaviorally relevant eye contralateral to the sensor, followed by a causal communication of the other eye from the other hemisphere. These findings demonstrate that the deceptively simple N170 ERP hides a complex network information processing mechanism involving initial coding and subsequent cross-hemispheric transfer of visual features.

18.
J Neurosci ; 35(44): 14691-701, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538641

RESUMO

The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT: The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms.


Assuntos
Estimulação Acústica/métodos , Ritmo alfa/fisiologia , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Medida da Produção da Fala/métodos , Fala/fisiologia , Adolescente , Adulto , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Adulto Jovem
19.
J Neurosci ; 33(46): 18277-87, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227737

RESUMO

The encoding of sensory information by populations of cortical neurons forms the basis for perception but remains poorly understood. To understand the constraints of cortical population coding we analyzed neural responses to natural sounds recorded in auditory cortex of primates (Macaca mulatta). We estimated stimulus information while varying the composition and size of the considered population. Consistent with previous reports we found that when choosing subpopulations randomly from the recorded ensemble, the average population information increases steadily with population size. This scaling was explained by a model assuming that each neuron carried equal amounts of information, and that any overlap between the information carried by each neuron arises purely from random sampling within the stimulus space. However, when studying subpopulations selected to optimize information for each given population size, the scaling of information was strikingly different: a small fraction of temporally precise cells carried the vast majority of information. This scaling could be explained by an extended model, assuming that the amount of information carried by individual neurons was highly nonuniform, with few neurons carrying large amounts of information. Importantly, these optimal populations can be determined by a single biophysical marker-the neuron's encoding time scale-allowing their detection and readout within biologically realistic circuits. These results show that extrapolations of population information based on random ensembles may overestimate the population size required for stimulus encoding, and that sensory cortical circuits may process information using small but highly informative ensembles.


Assuntos
Estimulação Acústica/métodos , Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Animais , Macaca mulatta , Masculino , Distribuição Aleatória , Fatores de Tempo
20.
J Neurosci ; 33(29): 12003-12, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23864687

RESUMO

In any sensory system, the primary afferents constitute the first level of sensory representation and fundamentally constrain all subsequent information processing. Here, we show that the spike timing, reliability, and stimulus selectivity of primary afferents in the whisker system can be accurately described by a simple model consisting of linear stimulus filtering combined with spike feedback. We fitted the parameters of the model by recording the responses of primary afferents to filtered, white noise whisker motion in anesthetized rats. The model accurately predicted not only the response of primary afferents to white noise whisker motion (median correlation coefficient 0.92) but also to naturalistic, texture-induced whisker motion. The model accounted both for submillisecond spike-timing precision and for non-Poisson spike train structure. We found substantial diversity in the responses of the afferent population, but this diversity was accurately captured by the model: a 2D filter subspace, corresponding to different mixtures of position and velocity sensitivity, captured 94% of the variance in the stimulus selectivity. Our results suggest that the first stage of the whisker system can be well approximated as a bank of linear filters, forming an overcomplete representation of a low-dimensional feature space.


Assuntos
Potenciais de Ação/fisiologia , Células Receptoras Sensoriais/fisiologia , Gânglio Trigeminal/fisiologia , Vibrissas/fisiologia , Vias Aferentes/fisiologia , Animais , Estimulação Física , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA