Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4345, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341316

RESUMO

Environmental and genetic risk factors contribute to Parkinson's Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mesencéfalo/metabolismo , Técnicas Biossensoriais , Proteínas de Choque Térmico HSP90/fisiologia , Mesencéfalo/patologia , NF-kappa B/metabolismo , Fator de Transcrição STAT3/metabolismo , Estresse Fisiológico
2.
Curr Top Med Chem ; 16(25): 2829-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27072699

RESUMO

A toxic accumulation of proteins is the hallmark pathology of several neurodegenerative disorders. Protein accumulation is regularly prevented by the network of molecular chaperone proteins, including and especially Hsp90. For reasons not yet elucidated, Hsp90 and the molecular chaperones interact with, but do not degrade, these toxic proteins resulting in the pathogenic accumulation of proteins such as tau, in Alzheimer's Disease, and α-synuclein, in Parkinson's Disease. In this review, we describe the associations between Hsp90 and the pathogenic and driver proteins of several neurodegenerative disorders. We additionally describe how the inhibition of Hsp90 promotes the degradation of both mutant and pathogenic protein species in models of neurodegenerative diseases. We also examine the current state of Hsp90 inhibitors capable of crossing the blood-brain barrier; compounds which may be capable of slowing, preventing, and possible reversing neurodegenerative diseases.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Doenças Neurodegenerativas/metabolismo , Humanos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA