Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Microsc ; 243(1): 60-76, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21288236

RESUMO

With the rapid advance of three-dimensional (3D) confocal imaging technology, more and more 3D cellular images will be available. Segmentation of intact cells is a critical task in automated image analysis and quantification of cellular microscopic images. One of the major complications in the automatic segmentation of cellular images arises due to the fact that cells are often closely clustered. Several algorithms are proposed for segmenting cell clusters but most of them are 2D based. In other words, these algorithms are designed to segment 2D cell clusters from a single image. Given 2D segmentation methods developed, they can certainly be applied to each image slice with the 3D cellular volume to obtain the segmented cell clusters. Apparently, in such case, the 3D depth information with the volumetric images is not really used. Often, 3D reconstruction is conducted after the individualized segmentation to build the 3D cellular models from segmented 2D cellular contours. Such 2D native process is not appropriate as stacking of individually segmented 2D cells or nuclei do not necessarily form the correct and complete 3D cells or nuclei in 3D. This paper proposes a novel and efficient 3D cluster splitting algorithm based on concavity analysis and interslice spatial coherence. We have taken the advantage of using the 3D boundary points detected using higher order statistics as an input contour for performing the 3D cluster splitting algorithm. The idea is to separate the touching or overlapping cells or nuclei in a 3D native way. Experimental results show the efficiency of our algorithm for 3D microscopic cellular images.


Assuntos
Automação/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Algoritmos , Animais , Encéfalo/patologia , Camundongos
2.
J Microsc ; 235(2): 209-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19659914

RESUMO

In recent years, cell biologists have benefited greatly from using confocal microscopy to study intracellular organelles. For high-level image analysis, 3D boundary extraction of cell structure is a preliminary requisite in confocal cellular imaging. To detect the object boundaries, most investigators have used gradient/Laplacian operator as a principal tool. In this paper we propose a higher order statistics (HOS) based boundary extraction algorithm for confocal cellular image data set using kurtosis. After the initial pre-processing, kurtosis boundary map is estimated locally for the entire volume using a cubic sliding window and subsequently the noisy kurtosis value is removed by thresholding. Voxels having positive kurtosis value with zero-crossing on its surface are then identified as boundary voxels. Typically used in signal processing, kurtosis for 3D cellular image processing is a novel application of HOS. Its reliable and robust nature of computing makes it very suitable for volumetric cellular boundary extraction.


Assuntos
Encéfalo/ultraestrutura , Núcleo Celular/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Neurônios/ultraestrutura , Animais , Camundongos
3.
Microsc Res Tech ; 75(1): 20-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21618651

RESUMO

Confocal laser scanning microscopy has become a most powerful tool to visualize and analyze the dynamic behavior of cellular molecules. Photobleaching of fluorochromes is a major problem with confocal image acquisition that will lead to intensity attenuation. Photobleaching effect can be reduced by optimizing the collection efficiency of the confocal image by fast z-scanning. However, such images suffer from distortions, particularly in the z dimension, which causes disparities in the x, y, and z directions of the voxels with the original image stacks. As a result, reliable segmentation and feature extraction of these images may be difficult or even impossible. Image interpolation is especially needed for the correction of undersampling artifact in the axial plane of three-dimensional images generated by a confocal microscope to obtain cubic voxels. In this work, we present an adaptive cubic B-spline-based interpolation with the aid of lookup tables by deriving adaptive weights based on local gradients for the sampling nodes in the interpolation formulae. Thus, the proposed method enhances the axial resolution of confocal images by improving the accuracy of the interpolated value simultaneously with great reduction in computational cost. Numerical experimental results confirm the effectiveness of the proposed interpolation approach and demonstrate its superiority both in terms of accuracy and speed compared to other interpolation algorithms.


Assuntos
Biologia Computacional/métodos , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Animais , Cerebelo/química , Biologia Computacional/instrumentação , Imageamento Tridimensional/instrumentação , Camundongos , Microscopia Confocal/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA