Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Annu Rev Nutr ; 41: 19-47, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270333

RESUMO

The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease.


Assuntos
Ciclo do Ácido Cítrico , Ciclo do Ácido Cítrico/fisiologia , Humanos , Oxirredução
2.
FASEB J ; 32(6): 3070-3084, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401626

RESUMO

The breast cancer type 1 susceptibility protein (Brca1) is a regulator of DNA repair in mammary gland cells; however, recent cell culture evidence suggests that Brca1 influences other processes, including those in nonmammary cells. In this study, we sought to determine whether Brca1 is necessary for metabolic regulation of skeletal muscle using a novel in vivo mouse model. We developed an inducible skeletal muscle-specific Brca1knockout (BRCA1KOsmi) model to test whether Brca1 expression is necessary for maintenance of metabolic function of skeletal muscle when exposed to a high-fat diet (HFD). Our data demonstrated that deletion of Brca1 prevented HFD-induced alterations in glucose and insulin tolerance. Irrespective of diet, BRCA1KOsmi mice exhibited significantly lower ADP-stimulated complex I mitochondrial respiration rates compared to age-matched wild-type (WT) mice. The data show that Brca1 has the ability to localize to the mitochondria in skeletal muscle and that BRCA1KOsmi mice exhibit higher whole-body CO2 production, respiratory exchange ratio, and energy expenditure, compared with the WT mice. Our results demonstrate that loss of Brca1 in skeletal muscle leads to dysregulated metabolic function, characterized by decreased mitochondrial respiration. Thus, any condition that results in loss of Brca1 function could induce metabolic imbalance in skeletal muscle.-Jackson, K. C., Tarpey, M. D., Valencia, A. P., Iñigo, M. R., Pratt, S. J., Patteson, D. J., McClung, J. M., Lovering, R. M., Thomson, D. M., Spangenburg, E. E. Induced Cre-mediated knockdown of Brca1 in skeletal muscle reduces mitochondrial respiration and prevents glucose intolerance in adult mice on a high-fat diet.


Assuntos
Gorduras na Dieta/efeitos adversos , Técnicas de Silenciamento de Genes , Intolerância à Glucose/prevenção & controle , Integrases , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Proteínas Supressoras de Tumor/deficiência , Animais , Proteína BRCA1 , Gorduras na Dieta/farmacologia , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Proteínas Supressoras de Tumor/metabolismo
3.
J Vasc Surg ; 65(5): 1504-1514.e11, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28024849

RESUMO

OBJECTIVE: Reduced skeletal muscle mitochondrial function might be a contributing mechanism to the myopathy and activity based limitations that typically plague patients with peripheral arterial disease (PAD). We hypothesized that mitochondrial dysfunction, myofiber atrophy, and muscle contractile deficits are inherently determined by the genetic background of regenerating ischemic mouse skeletal muscle, similar to how patient genetics affect the distribution of disease severity with clinical PAD. METHODS: Genetically ischemia protected (C57BL/6) and susceptible (BALB/c) mice underwent either unilateral subacute hind limb ischemia (SLI) or myotoxic injury (cardiotoxin) for 28 days. Limbs were monitored for blood flow and tissue oxygen saturation and tissue was collected for the assessment of histology, muscle contractile force, gene expression, mitochondrial content, and respiratory function. RESULTS: Despite similar tissue O2 saturation and mitochondrial content between strains, BALB/c mice suffered persistent ischemic myofiber atrophy (55.3% of C57BL/6) and muscle contractile deficits (approximately 25% of C57BL/6 across multiple stimulation frequencies). SLI also reduced BALB/c mitochondrial respiratory capacity, assessed in either isolated mitochondria (58.3% of C57BL/6 at SLI on day (d)7, 59.1% of C57BL/6 at SLI d28 across multiple conditions) or permeabilized myofibers (38.9% of C57BL/6 at SLI d7; 76.2% of C57BL/6 at SLI d28 across multiple conditions). SLI also resulted in decreased calcium retention capacity (56.0% of C57BL/6) in BALB/c mitochondria. Nonischemic cardiotoxin injury revealed similar recovery of myofiber area, contractile force, mitochondrial respiratory capacity, and calcium retention between strains. CONCLUSIONS: Ischemia-susceptible BALB/c mice suffered persistent muscle atrophy, impaired muscle function, and mitochondrial respiratory deficits during SLI. Interestingly, parental strain susceptibility to myopathy appears specific to regenerative insults including an ischemic component. Our findings indicate that the functional deficits that plague PAD patients could include mitochondrial respiratory deficits genetically inherent to the regenerating muscle myofibers.


Assuntos
Isquemia/metabolismo , Isquemia/fisiopatologia , Mitocôndrias Musculares/metabolismo , Contração Muscular , Força Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Animais , Respiração Celular , Modelos Animais de Doenças , Genótipo , Membro Posterior , Isquemia/genética , Isquemia/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/patologia , Desenvolvimento Muscular , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Fenótipo , Regeneração , Fluxo Sanguíneo Regional , Especificidade da Espécie , Fatores de Tempo
4.
JCI Insight ; 5(18)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32841216

RESUMO

Compromised muscle mitochondrial metabolism is a hallmark of peripheral arterial disease, especially in patients with the most severe clinical manifestation - critical limb ischemia (CLI). We asked whether inflexibility in metabolism is critical for the development of myopathy in ischemic limb muscles. Using Polg mtDNA mutator (D257A) mice, we reveal remarkable protection from hind limb ischemia (HLI) due to a unique and beneficial adaptive enhancement of glycolytic metabolism and elevated ischemic muscle PFKFB3. Similar to the relationship between mitochondria from CLI and claudicating patient muscles, BALB/c muscle mitochondria are uniquely dysfunctional after HLI onset as compared with the C57BL/6 (BL6) parental strain. AAV-mediated overexpression of PFKFB3 in BALB/c limb muscles improved muscle contractile function and limb blood flow following HLI. Enrichment analysis of RNA sequencing data on muscle from CLI patients revealed a unique deficit in the glucose metabolism Reactome. Muscles from these patients express lower PFKFB3 protein, and their muscle progenitor cells possess decreased glycolytic flux capacity in vitro. Here, we show supplementary glycolytic flux as sufficient to protect against ischemic myopathy in instances where reduced blood flow-related mitochondrial function is compromised preclinically. Additionally, our data reveal reduced glycolytic flux as a common characteristic of the failing CLI patient limb skeletal muscle.


Assuntos
Glicólise , Membro Posterior/patologia , Isquemia/complicações , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Doenças Musculares/prevenção & controle , Fosfofrutoquinase-2/administração & dosagem , Animais , Terapia Genética , Membro Posterior/irrigação sanguínea , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/etiologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fosfofrutoquinase-2/genética , Transcriptoma
5.
Mol Metab ; 34: 1-15, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32180550

RESUMO

OBJECTIVE: Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or influenced by secondary effects, making it difficult to assign a causal role for ERα. The objective of this study was to determine the role of skeletal muscle ERα in regulating metabolism in the absence of confounding factors of development. METHODS: A novel mouse model was developed allowing for induced deletion of ERα in adult female skeletal muscle (ERαKOism). ERαshRNA was also used to knockdown ERα (ERαKD) in human myotubes cultured from primary human skeletal muscle cells isolated from muscle biopsies from healthy and obese insulin-resistant women. RESULTS: Twelve weeks of HFD exposure had no differential effects on body composition, VO2, VCO2, RER, energy expenditure, and activity counts across genotypes. Although ERαKOism mice exhibited greater glucose intolerance than wild-type (WT) mice after chronic HFD, ex vivo skeletal muscle glucose uptake was not impaired in the ERαKOism mice. Expression of pro-inflammatory genes was altered in the skeletal muscle of the ERαKOism, but the concentrations of these inflammatory markers in the systemic circulation were either lower or remained similar to the WT mice. Finally, skeletal muscle mitochondrial respiratory capacity, oxidative phosphorylation efficiency, and H2O2 emission potential was not affected in the ERαKOism mice. ERαKD in human skeletal muscle cells neither altered differentiation capacity nor caused severe deficits in mitochondrial respiratory capacity. CONCLUSIONS: Collectively, these results suggest that ERα function is superfluous in protecting against HFD-induced skeletal muscle metabolic derangements after postnatal development is complete.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Receptor alfa de Estrogênio/deficiência , Feminino , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia
6.
Cell Metab ; 29(6): 1291-1305.e8, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31006591

RESUMO

The hepatic TCA cycle supports oxidative and biosynthetic metabolism. This dual responsibility requires anaplerotic pathways, such as pyruvate carboxylase (PC), to generate TCA cycle intermediates necessary for biosynthesis without disrupting oxidative metabolism. Liver-specific PC knockout (LPCKO) mice were created to test the role of anaplerotic flux in liver metabolism. LPCKO mice have impaired hepatic anaplerosis, diminution of TCA cycle intermediates, suppressed gluconeogenesis, reduced TCA cycle flux, and a compensatory increase in ketogenesis and renal gluconeogenesis. Loss of PC depleted aspartate and compromised urea cycle function, causing elevated urea cycle intermediates and hyperammonemia. Loss of PC prevented diet-induced hyperglycemia and insulin resistance but depleted NADPH and glutathione, which exacerbated oxidative stress and correlated with elevated liver inflammation. Thus, despite catalyzing the synthesis of intermediates also produced by other anaplerotic pathways, PC is specifically necessary for maintaining oxidation, biosynthesis, and pathways distal to the TCA cycle, such as antioxidant defenses.


Assuntos
Antioxidantes/metabolismo , Ciclo do Ácido Cítrico/genética , Fígado/metabolismo , Redes e Vias Metabólicas/genética , Piruvato Carboxilase/genética , Animais , Respiração Celular/genética , Gluconeogênese/genética , Hepatite/genética , Hepatite/metabolismo , Hepatite/patologia , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Piruvato Carboxilase/metabolismo
7.
J Appl Physiol (1985) ; 124(4): 980-992, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345963

RESUMO

Estradiol deficiency in females can result in skeletal muscle strength loss, and treatment with estradiol mitigates the loss. There are three primary estrogen receptors (ERs), and estradiol elicits effects through these receptors in various tissues. Ubiquitous ERα-knockout mice exhibit numerous biological disorders, but little is known regarding the specific role of ERα in skeletal muscle contractile function. The purpose of this study was to determine the impact of skeletal muscle-specific ERα deletion on contractile function, hypothesizing that ERα is a main receptor through which estradiol affects muscle strength in females. Deletion of ERα specifically in skeletal muscle (skmERαKO) did not affect body mass compared with wild-type littermates (skmERαWT) until 26 wk of age, at which time body mass of skmERαKO mice began to increase disproportionally. Overall, skmERαKO mice had low strength demonstrated in multiple muscles and by several contractile parameters. Isolated extensor digitorum longus muscles from skmERαKO mice produced 16% less eccentric and 16-26% less submaximal and maximal isometric force, and isolated soleus muscles were more fatigable, with impaired force recovery relative to skmERαWT mice. In vivo maximal torque productions by plantarflexors and dorsiflexors were 16% and 12% lower in skmERαKO than skmERαWT mice, and skmERαKO muscles had low phosphorylation of myosin regulatory light chain. Plantarflexors also generated 21-32% less power, submaximal isometric and peak concentric torques. Data support the hypothesis that ablation of ERα in skeletal muscle results in muscle weakness, suggesting that the beneficial effects of estradiol on muscle strength are receptor mediated through ERα. NEW & NOTEWORTHY We comprehensively measured in vitro and in vivo skeletal muscle contractility in female estrogen receptor α (ERα) skeletal muscle-specific knockout mice and report that force generation is impaired across multiple parameters. These results support the hypothesis that a primary mechanism through which estradiol elicits its effects on strength is mediated by ERα. Evidence is presented that estradiol signaling through ERα appears to modulate force at the molecular level via posttranslational modifications of myosin regulatory light chain.


Assuntos
Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Contração Muscular , Força Muscular , Músculo Esquelético/metabolismo , Animais , Feminino , Camundongos Knockout , Atividade Motora
8.
J Diet Suppl ; 13(3): 324-38, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26317662

RESUMO

PURPOSE: To determine if an echinacea-based dietary supplement (EBS) provided at two different doses (a regular dose (RD), 8,000 mg/day, vs. a double dose (DD), 16,000 mg/day) would increase erythropoietin (EPO) and other blood markers involved in improving aerobic capacity and maximal oxygen consumption (VO2max) in endurance-trained men. Secondly, to determine if any sex differences exist between male and female endurance-trained athletes. METHODS: Forty-five endurance athletes completed three visits during a 35-day intervention. Participants were randomized into placebo (PLA; n = 8 men, n = 7 women), RD of EBS (n = 7 men, n = 8 women), or DD of EBS (n = 15 men) for the 35-day intervention period. At baseline, weight, body composition, and VO2max were measured. Blood was drawn to measure EPO, ferritin, red blood cells, white blood cells, hemoglobin, and hematocrit. At the mid-intervention visit, blood was collected. At the post-intervention visit, all measurements from the baseline visit were obtained once again. RESULTS: There was a significant increase in VO2max for endurance-trained men in PLA (increase of 2.8 ± 1.5 ml kg(-1) min(-1), p = .01) and RD of EBS (increase of 2.6 ± 1.8 ml kg(-1) min(-1), p = .04), but not in DD of EBS (p = .96). Importantly, there was no difference in the change in VO2max between PLA and RD of EBS. For endurance-trained women, VO2max did not change in either treatment (PLA: -0.7 ± 1.7 ml kg(-1) min(-1), p = .31; RD of EBS: -0.2 ± 2.4 ml kg(-1) min(-1), p = .80). There were no significant changes in any blood parameter across visits for any treatment group. CONCLUSIONS: This EBS should not be recommended as a means to improve performance in endurance athletes.


Assuntos
Suplementos Nutricionais , Echinacea , Exercício Físico/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Resistência Física/efeitos dos fármacos , Extratos Vegetais/farmacologia , Corrida/fisiologia , Adulto , Atletas , Biomarcadores/sangue , Contagem de Células Sanguíneas , Eritropoetina/sangue , Feminino , Ferritinas/sangue , Hematócrito , Hemoglobinas/metabolismo , Humanos , Masculino , Resistência Física/fisiologia , Extratos Vegetais/administração & dosagem , Fatores Sexuais , Método Simples-Cego , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA