Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 29(32): 325704, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-29763412

RESUMO

The combination of smooth, continuous sound spectra produced by a sound source having no vibrating parts, a nanoscale thickness of a flexible active layer and the feasibility of creating large, conformal projectors provoke interest in thermoacoustic phenomena. However, at low frequencies, the sound pressure level (SPL) and the sound generation efficiency of an open carbon nanotube sheet (CNTS) is low. In addition, the nanoscale thickness of fragile heating elements, their high sensitivity to the environment and the high surface temperatures practical for thermoacoustic sound generation necessitate protective encapsulation of a freestanding CNTS in inert gases. Encapsulation provides the desired increase of sound pressure towards low frequencies. However, the protective enclosure restricts heat dissipation from the resistively heated CNTS and the interior of the encapsulated device. Here, the heat dissipation issue is addressed by short pulse excitations of the CNTS. An overall increase of energy conversion efficiency by more than four orders (from 10-5 to 0.1) and the SPL of 120 dB re 20 µPa @ 1 m in air and 170 dB re 1 µPa @ 1 m in water were demonstrated. The short pulse excitation provides a stable linear increase of output sound pressure with substantially increased input power density (>2.5 W cm-2). We provide an extensive experimental study of pulse excitations in different thermodynamic regimes for freestanding CNTSs with varying thermal inertias (single-walled and multiwalled with varying diameters and numbers of superimposed sheet layers) in vacuum and in air. The acoustical and geometrical parameters providing further enhancement of energy conversion efficiency are discussed.

2.
J Nanosci Nanotechnol ; 18(4): 2732-2737, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442950

RESUMO

Flexible and compressible temperature sensors are highly desired for artificial skin and epidermal electronics. Here we demonstrated a flexible and compressible resistive temperature sensor using hierarchically buckled carbon nanotube/rubber bi-sheath-core structure (a buckled carbon nanotube outer sheath and a buckled rubber inner sheath wrapped around a rubber fiber core). When heated, lateral contacts of the adjacent buckles increase, resulting in electrical resistance decrease and serving as highly sensitive temperature sensors. This bi-sheath-core fiber temperature sensor showed high linearity, good repeatability, large negative temperature coefficient of resistance (NTC = -54.7/°C), and insensitivity to compressive deformations (up to -20% strain). The NTC and temperature dependence of percent resistance change can be easily tuned by modulating the buckling bi-sheath-core structures such as varying the number of nanotube layers and the rubber sheath stiffness.

3.
ACS Appl Mater Interfaces ; 11(11): 10862-10873, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30735351

RESUMO

Inflatable conducting devices providing improved properties and functionalities are needed for diverse applications. However, the difficult part in making high-performance inflatable devices is the enabling of two-dimensional (2D) buckles with controlled structures on inflatable catheters. Here, we report the fabrication of highly inflatable devices with controllable structures by wrapping the super-aligned carbon nanotube sheet (SACNS) on the pre-inflated catheter. The resulting structure exhibits unique 2D buckled structures including quasi-parallel buckles, crisscrossed buckles, and hierarchically buckled structures, which enables reversible structural changes of 7470% volumetric strain. The 2D SACNS buckled structures show stable electrical conductance and surface wettability during large strain inflation/deflation cycles. Inflatable devices including inflatable tumor ablation, capacitive volumetric strain sensor, and communication via inflatable radio frequency antenna based on these structures are demonstrated.

4.
Polymers (Basel) ; 10(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30966410

RESUMO

The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm-1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD) was 0.05 mM, for the range of 0.05⁻5 mM, the sensitivity is 46 mA·M-1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.

5.
Adv Mater ; 28(25): 4946, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27372719

RESUMO

Using intelligent textiles for clothing represents one possibility for weavable superelastic conducting fibers that can store energy, sense body motions, and detect biochemicals. On page 4998, S. Yin, R. H. Baughman, and co-workers demonstrate that these hair-like-diameter fibers, comprising buckled carbon nanotube sheaths on a rubber core, can be used as glucose sensors, supercapacitors, ultrafast strain sensors, and electrical interconnectors. The performance of these structures is maintained also under giant strain.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Têxteis
6.
Adv Mater ; 28(25): 4998-5007, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27135200

RESUMO

Hair-like-diameter superelastic conducting fibers, comprising a buckled carbon nanotube sheath on a rubber core, are fabricated, characterized, and deployed as weavable wires, biosensors, supercapacitors, and strain sensors. These downsized sheath-core fibers provide the demonstrated basis for glucose sensors, supercapacitors, and electrical interconnects whose performance is undegraded by giant strain, as well as ultrafast strain sensors that exploit strain-dependent capacitance changes.


Assuntos
Técnicas Biossensoriais , Capacitância Elétrica , Nanotubos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA