Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 129: 93-102, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35370088

RESUMO

Gamete fusion is of considerable importance in reproductive events, as it determines the gamete pairs or chromosomes that the next generation will inherit. To preserve species specificity with an appropriate karyotype, the fusion between gametes requires regulatory mechanisms to ensure limited fusion competency. In many organisms, gamete surfaces are not smooth, but present constitutive or transient cellular protrusions suggested to be involved in gamete fusion. However, the molecular mechanisms and the factors essential for the membrane-membrane fusion process and cellular protrusion involvement have remained unclear. Recent advances in the identification and functional analysis of the essential factors for gamete interaction have revealed the molecular mechanisms underlying their activity regulation and dynamics. In homogametic fertilization, dynamic regulation of the fusion core machinery on cellular protrusions was precisely uncovered. In heterogametic fertilization, oocyte fusion competency was suggested to correlate with the compartmentalization of the fusion essential factor and protrusion formation. These findings shed light on the significance of cellular protrusions in gamete fusion as a physically and functionally specialized site for cellular fusion. In this review, we consider the developments in gamete interaction research in various species with different fertilization modes, highlighting the commonalities in the relationship between gamete fusion and cellular protrusions.


Assuntos
Fertilização , Interações Espermatozoide-Óvulo , Extensões da Superfície Celular , Células Germinativas , Oócitos , Interações Espermatozoide-Óvulo/fisiologia
2.
Development ; 147(15)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665248

RESUMO

Gamete fusion is an indispensable process for bearing offspring. In mammals, sperm IZUMO1-oocyte JUNO recognition essentially carries out the primary step of this process. In oocytes, CD9 is also known to play a crucial role in gamete fusion. In particular, microvilli biogenesis through CD9 involvement appears to be a key event for successful gamete fusion, because CD9-disrupted oocytes produce short and sparse microvillous structures, resulting in almost no fusion ability with spermatozoa. In order to determine how CD9 and JUNO cooperate in gamete fusion, we analyzed the molecular profiles of each molecule in CD9- and JUNO-disrupted oocytes. Consequently, we found that CD9 is crucial for the exclusion of GPI-anchored proteins, such as JUNO and CD55, from the cortical actin cap region, suggesting strict molecular organization of the unique surface of this region. Through distinct surface compartmentalization due to CD9 governing, GPI-anchored proteins are confined to the appropriate fusion site of the oocyte.


Assuntos
Oócitos/metabolismo , Tetraspanina 29/metabolismo , Animais , Antígenos CD55/genética , Antígenos CD55/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Oócitos/citologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Interações Espermatozoide-Óvulo , Espermatozoides/citologia , Espermatozoides/metabolismo , Tetraspanina 29/genética
3.
Nature ; 534(7608): 566-9, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27309808

RESUMO

Fertilization is a fundamental process in sexual reproduction, creating a new individual through the combination of male and female gametes. The IZUMO1 sperm membrane protein and its counterpart oocyte receptor JUNO have been identified as essential factors for sperm-oocyte interaction and fusion. However, the mechanism underlying their specific recognition remains poorly defined. Here, we show the crystal structures of human IZUMO1, JUNO and the IZUMO1-JUNO complex, establishing the structural basis for the IZUMO1-JUNO-mediated sperm-oocyte interaction. IZUMO1 exhibits an elongated rod-shaped structure comprised of a helical bundle IZUMO domain and an immunoglobulin-like domain that are each firmly anchored to an intervening ß-hairpin region through conserved disulfide bonds. The central ß-hairpin region of IZUMO1 provides the main platform for JUNO binding, while the surface located behind the putative JUNO ligand binding pocket is involved in IZUMO1 binding. Structure-based mutagenesis analysis confirms the biological importance of the IZUMO1-JUNO interaction. This structure provides a major step towards elucidating an essential phase of fertilization and it will contribute to the development of new therapeutic interventions for fertility, such as contraceptive agents.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Interações Espermatozoide-Óvulo , Sítios de Ligação/genética , Proteínas de Transporte/genética , Cristalografia por Raios X , Proteínas do Ovo , Feminino , Humanos , Imunoglobulinas/genética , Ligantes , Masculino , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Oócitos/química , Oócitos/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína , Receptores de Superfície Celular , Interações Espermatozoide-Óvulo/genética , Espermatozoides/química , Espermatozoides/metabolismo
4.
Mol Reprod Dev ; 88(7): 479-481, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34114279

RESUMO

Many factors are involved in acrosome biogenesis in order for appropriate acrosome formation to occur. Here, we demonstrate that IZUMO family member 3, IZUMO3, plays an important role in acrosome biogenesis, as proven by gene disruption experiments. A loss of IZUMO3 in round spermatids affects acrosomal granule positioning due to lack of acrosomal granule contact with the inner acrosomal membrane, leading to the formation of grossly malformed spermatozoa associated with male subfertility. Thus, we suggest that mammalian spermiogenesis needs an elaborate acrosome biogenesis through IZUMO3 involvement.


Assuntos
Acrossomo/fisiologia , Fertilidade/genética , Proteínas de Membrana/fisiologia , Reação Acrossômica/genética , Animais , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Espermatogênese/genética , Espermatozoides/anormalidades , Espermatozoides/fisiologia
5.
Int J Mol Sci ; 20(19)2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31569716

RESUMO

Sperm-egg fusion is accomplished through the interaction of a specific set of membrane proteins in each gamete: sperm IZUMO1 and oocyte JUNO. Recently, we found that alternative splicing of the Izumo1 gene generates a novel IZUMO1 isoform (IZUMO1_v2). Here, we obtained four mouse lines, having graded different levels of IZUMO1 protein by combining an original IZUMO1 (IZUMO1_v1) knockout with IZUMO1-null (both IZUMO1_v1 and _v2 disrupted) genetic background, in order to determine how the quantity of IZUMO1 influences male fertility. Subsequently, we clarified that the signal intensity from two quantitative assays, western blot and immunostaining analyses with a monoclonal antibody against mouse IZUMO1, were strongly correlated with average litter size. These results suggest that evaluating IZUMO1 protein levels is useful for predicting fecundity, and is a suitable test for male fertility.


Assuntos
Fertilidade/genética , Células Germinativas/metabolismo , Imunoglobulinas/genética , Proteínas de Membrana/genética , Espermatozoides/metabolismo , Animais , Biomarcadores , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Camundongos
6.
Dev Dyn ; 247(5): 754-762, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29330887

RESUMO

BACKGROUND: Vesicle-associated membrane protein 5 (VAMP5) is a member of the SNARE protein family, which regulates the docking and fusion of membrane vesicles within cells. Previously, we reported ubiquitous expression of VAMP5 proteins in various organs except the brain and small intestine. However, the precise roles of VAMP5 in each organ remain unclear. To explore the roles of VAMP5 in vivo, we generated VAMP5 knockout (KO) mice. RESULTS: VAMP5 KO mice showed low birth rate and low body weight. KO embryos grew normally in the uterus, and tended to die around birth. Anatomical analysis revealed that viable KO mice often exhibited duplication of the ureter, and dead KO mice showed insufficient expansion of the lung. VAMP5 was localized in the epithelial cells of the ureter and terminal bronchiole. CONCLUSIONS: VAMP5 KO mice showed a low birth rate and abnormalities of the urinary and respiratory systems. VAMP5 KO mice died around birth, possibly due to defects in vesicoureteral flow and breathing. The results presented could provide a basis for future studies to understand the roles of VAMP5 protein. Developmental Dynamics 247:754-762, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Pulmão/embriologia , Pulmão/metabolismo , Proteínas R-SNARE/deficiência , Proteínas R-SNARE/metabolismo , Ureter/embriologia , Ureter/metabolismo , Animais , Feminino , Rim/embriologia , Rim/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas R-SNARE/genética , Sistema Urinário/embriologia , Sistema Urinário/metabolismo , Urotélio/embriologia , Urotélio/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(3): E311-20, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25564662

RESUMO

Most mammals have two major olfactory subsystems: the main olfactory system (MOS) and vomeronasal system (VNS). It is now widely accepted that the range of pheromones that control social behaviors are processed by both the VNS and the MOS. However, the functional contributions of each subsystem in social behavior remain unclear. To genetically dissociate the MOS and VNS functions, we established two conditional knockout mouse lines that led to either loss-of-function in the entire MOS or in the dorsal MOS. Mice with whole-MOS loss-of-function displayed severe defects in active sniffing and poor survival through the neonatal period. In contrast, when loss-of-function was confined to the dorsal MOB, sniffing behavior, pheromone recognition, and VNS activity were maintained. However, defects in a wide spectrum of social behaviors were observed: attraction to female urine and the accompanying ultrasonic vocalizations, chemoinvestigatory preference, aggression, maternal behaviors, and risk-assessment behaviors in response to an alarm pheromone. Functional dissociation of pheromone detection and pheromonal induction of behaviors showed the anterior olfactory nucleus (AON)-regulated social behaviors downstream from the MOS. Lesion analysis and neural activation mapping showed pheromonal activation in multiple amygdaloid and hypothalamic nuclei, important regions for the expression of social behavior, was dependent on MOS and AON functions. Identification of the MOS-AON-mediated pheromone pathway may provide insights into pheromone signaling in animals that do not possess a functional VNS, including humans.


Assuntos
Comportamento Animal , Feromônios/fisiologia , Olfato/fisiologia , Comportamento Social , Animais , Aprendizagem da Esquiva , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
J Plant Res ; 130(3): 475-478, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27995377

RESUMO

When a spermatozoon fertilizes an oocyte in mammals, there must be an extremely precise regulation system for successful gamete fusion to occur, which is the final step of fertilization. Using gene-modified animals, IZUMO1 on the sperm side and its receptor, JUNO, on the ovum side, have been unveiled as indispensable factors for triggering membrane fusion. We recently analyzed the detailed molecular machinery of the IZUMO1-JUNO recognition system and clarified the tertiary architecture of the IZUMO1-JUNO complex based on the crystal structure. Over the past 2 years, important discoveries have successively emerged, presenting a new perspective on fertilization. In this mini-review, I will initially explain the historical background of the molecular mechanism study of gamete fusion, and go on to describe our latest study data.


Assuntos
Fertilização/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Oócitos/metabolismo , Oócitos/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Proteínas do Ovo , Feminino , Humanos , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imunoglobulinas/fisiologia , Masculino , Proteínas de Membrana/genética , Camundongos , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia
10.
Trends Genet ; 29(7): 427-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23453622

RESUMO

Cell-cell fusion in sexually reproducing organisms is a mechanism to merge gamete genomes and, in multicellular organisms, it is a strategy to sculpt organs, such as muscle, bone, and placenta. Moreover, this mechanism has been implicated in pathological conditions, such as infection and cancer. Studies of genetic model organisms have uncovered a unifying principle: cell fusion is a genetically programmed process. This process can be divided in three stages: competence (cell induction and differentiation); commitment (cell determination, migration, and adhesion); and cell fusion (membrane merging and cytoplasmic mixing). Recent work has led to the discovery of fusogens, which are cell fusion proteins that are necessary and sufficient to fuse cell membranes. Two unrelated families of fusogens have been discovered, one in mouse placenta and one in Caenorhabditis elegans (syncytins and F proteins, respectively). Current research aims to identify new fusogens and determine the mechanisms by which they merge membranes.


Assuntos
Fusão Celular , Animais , Caenorhabditis elegans/fisiologia , Diferenciação Celular/fisiologia , Membrana Celular/fisiologia , Citoplasma/fisiologia , Feminino , Fertilização/genética , Fertilização/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/fisiologia , Humanos , Macrófagos/fisiologia , Fusão de Membrana/genética , Fusão de Membrana/fisiologia , Camundongos , Mioblastos/fisiologia , Neurospora crassa/fisiologia , Placenta/fisiologia , Plantas/metabolismo , Gravidez , Saccharomyces cerevisiae/fisiologia
11.
Development ; 140(15): 3221-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23824580

RESUMO

Although the membrane fusion of spermatozoon and egg cells is the central event of fertilization, the underlying molecular mechanism remains virtually unknown. Gene disruption studies have showed that IZUMO1 on spermatozoon and CD9 on oocyte are essential transmembrane proteins in sperm-egg fusion. In this study, we dissected IZUMO1 protein to determine the domains that were required for the function of sperm-egg fusion. We found that a fragment of the N terminus (Asp5 to Leu113) interacts with fertilization inhibitory antibodies. It also binds to the egg surface and effectively inhibits fusion in vitro. We named this fragment 'IZUMO1 putative functional fragment (IZUMO1PFF)'. Surprisingly, IZUMO1PPF still maintains binding ability on the egg surface of Cd9(-/-) eggs. A series of biophysical measurements using circular dichroism, sedimentation equilibrium and small angle X-ray scattering revealed that IZUMO1PFF is composed of an N-terminal unfolded structure and a C-terminal ellipsoidal helix dimer. Egg binding and fusion inhibition were not observed in the IZUMO1PFF derivative, which was incapable of helix formation. These findings suggest that the formation of a helical dimer at the N-terminal region of IZUMO1 is required for its function. Cos-7 cells expressing the whole IZUMO1 molecule bound to eggs, and IZUMO1 accumulated at the interface between the two cells, but fusion was not observed. These observations suggest that IZUMO1 alone cannot promote sperm-egg membrane fusion, but it works as a factor that is related to the cellular surface interaction, such as the tethering of the membranes by a helical region corresponding to IZUMO1PFF-core.


Assuntos
Imunoglobulinas/fisiologia , Proteínas de Membrana/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Animais , Anticorpos Monoclonais , Sítios de Ligação , Fenômenos Biofísicos , Feminino , Imunoglobulinas/química , Imunoglobulinas/genética , Masculino , Fusão de Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/fisiologia , Estrutura Quaternária de Proteína , Tetraspanina 29/deficiência , Tetraspanina 29/genética , Tetraspanina 29/fisiologia
12.
Development ; 139(19): 3583-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22949614

RESUMO

SPACA1 is a membrane protein that localizes in the equatorial segment of spermatozoa in mammals and is reported to function in sperm-egg fusion. We produced a Spaca1 gene-disrupted mouse line and found that the male mice were infertile. The cause of this sterility was abnormal shaping of the sperm head reminiscent of globozoospermia in humans. Disruption of Spaca1 led to the disappearance of the nuclear plate, a dense lining of the nuclear envelope facing the inner acrosomal membrane. This coincided with the failure of acrosomal expansion during spermiogenesis and resulted in the degeneration and disappearance of the acrosome in mature spermatozoa. Thus, these findings clarify part of the cascade leading to globozoospermia.


Assuntos
Infertilidade Masculina/genética , Isoantígenos/genética , Proteínas de Plasma Seminal/genética , Cabeça do Espermatozoide/patologia , Espermatozoides/anormalidades , Acrossomo/metabolismo , Acrossomo/fisiologia , Animais , Forma Celular/genética , Expressão Gênica , Infertilidade Masculina/patologia , Isoantígenos/metabolismo , Isoantígenos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Proteínas de Plasma Seminal/metabolismo , Proteínas de Plasma Seminal/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatozoides/ultraestrutura , Distribuição Tecidual
13.
J Cell Sci ; 125(Pt 21): 4985-90, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22946049

RESUMO

Gene disruption experiments have proven that the acrosomal protein IZUMO1 is essential for sperm-egg fusion in the mouse. However, despite its predicted function, it is not expressed on the surface of ejaculated spermatozoa. Here, we report the dynamics of diffusion of IZUMO1 from the acrosomal membrane to the sperm surface at the time of the acrosome reaction, visualized using a fluorescent protein tag. IZUMO1 showed a tendency to localize in the equatorial segment of the sperm surface after the acrosome reaction. This region is considered to initiate fusion with the oolemma. The moment of sperm-egg fusion and the dynamic movements of proteins during fusion were also imaged live. Translocation of IZUMO1 during the fertilization process was clarified, and a fundamental mechanism in mammalian fertilization is postulated.


Assuntos
Reação Acrossômica , Acrossomo/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Animais , Membrana Celular/metabolismo , Feminino , Fertilização , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Espermatozoides/metabolismo , Imagem com Lapso de Tempo , Zona Pelúcida/metabolismo , Proteína Vermelha Fluorescente
14.
Proc Natl Acad Sci U S A ; 108(50): 20008-11, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22084105

RESUMO

Many investigators maintain that spermatozoa that have initiated the acrosome reaction (AR) before reaching the surface of the egg's zona pellucida (ZP) are unable to bind and penetrate the ZP. A recent study has revealed that most fertilizing mouse spermatozoa initiate the AR before contacting the ZP. We found that acrosome-reacted spermatozoa collected from the perivitelline space of Cd9-null mice (whose egg plasma membranes are incapable of fusing with spermatozoa) were able to pass through both the cumulus and ZP of WT mouse eggs and produced live offspring. This means that the spermatozoa we used had the ability to pass through the ZP at least twice. Apparently, some spermatozoa that had undergone the AR long before contact with the ZP remained capable of crossing the ZP and fertilizing eggs. Thus, the concept that acrosome-reacted spermatozoa are unable to bind to the ZP and have lost their fertilizing capacity must be reconsidered.


Assuntos
Reação Acrossômica/fisiologia , Fertilização/fisiologia , Óvulo/fisiologia , Espermatozoides/fisiologia , Membrana Vitelina/fisiologia , Animais , Embrião de Mamíferos , Feminino , Masculino , Camundongos , Zona Pelúcida/metabolismo
15.
Transgenic Res ; 22(1): 195-200, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22826106

RESUMO

Occasionally, chimeras do not transmit the gene of interest to pups in gene disruption experiments. However, the risk of failure could be reduced if we could identify embryonic stem (ES)-derived germ cells in the testis. Here, we report the production of pups from three lines of infertile chimeric male mice and the establishment of knockout lines by combining green fluorescent protein-tagged ES cells with intracytoplasmic sperm injection.


Assuntos
Quimera , Células-Tronco Embrionárias , Técnicas de Inativação de Genes/métodos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Quimera/genética , Quimera/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Germinativas/citologia , Proteínas de Fluorescência Verde , Humanos , Masculino , Camundongos , Injeções de Esperma Intracitoplásmicas
16.
J Biol Chem ; 286(7): 5639-46, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21131354

RESUMO

Calnexin (CANX) and calreticulin (CALR) are homologous lectin chaperones located in the endoplasmic reticulum and cooperate to mediate nascent glycoprotein folding. In the testis, calmegin (CLGN) and calsperin (CALR3) are expressed as germ cell-specific counterparts of CANX and CALR, respectively. Here, we show that Calr3(-/-) males produced apparently normal sperm but were infertile because of defective sperm migration from the uterus into the oviduct and defective binding to the zona pellucida. Whereas CLGN was required for ADAM1A/ADAM2 dimerization and subsequent maturation of ADAM3, a sperm membrane protein required for fertilization, we show that CALR3 is a lectin-deficient chaperone directly required for ADAM3 maturation. Our results establish the client specificity of CALR3 and demonstrate that the germ cell-specific CALR-like endoplasmic reticulum chaperones have contrasting functions in the development of male fertility. The identification and understanding of the maturation mechanisms of key sperm proteins will pave the way toward novel approaches for both contraception and treatment of unexplained male infertility.


Assuntos
Fertilidade/fisiologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Motilidade dos Espermatozoides/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/metabolismo , Testículo/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animais , Calbindina 2 , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Feminino , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos/fisiologia , Proteína G de Ligação ao Cálcio S100/genética , Zona Pelúcida/metabolismo
17.
J Cell Sci ; 123(Pt 9): 1531-6, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20375058

RESUMO

Mammalian fertilization is a multistep process that culminates in the fusion of the sperm and egg plasma membrane. It is widely accepted that the equatorial segment of the acrosome-reacted sperm is important in initiating fusion with the egg plasma membrane during fertilization. There are various proteins known to be distributed only in the equatorial segment of sperm. The role of these proteins must be clarified to understand the membrane fusion process. We produced a mouse line that lacked SPESP1 (sperm equatorial segment protein 1) and analyzed the fertilizing ability of the sperm. The average number of pups that were fathered by Spesp1(+/-) and Spesp1(-/-) males was significantly lower than that of wild-type fathers. In these mouse lines, fewer sperm were found to migrate into oviducts and fewer eggs were fertilized. The Spesp1(+/-) and Spesp1(-/-) sperm showed a lower fusing ability compared with the wild-type sperm. The disruption of Spesp1 was shown to cause an aberrant distribution of various sperm proteins. Moreover, scanning electron microscopy revealed that the membrane in the equatorial segment area, which usually forms an acrosomal sheath, disappears after acrosome reaction in Spesp1-deficient mice. It was demonstrated that SPESP1 is necessary to produce the fully 'fusion competent' sperm.


Assuntos
Proteínas de Transporte/metabolismo , Fertilização/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Animais , Western Blotting , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Microscopia Eletrônica , Transporte Proteico , Proteínas de Plasma Seminal/genética , Espermatozoides/citologia , Espermatozoides/ultraestrutura
18.
Nature ; 434(7030): 234-8, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15759005

RESUMO

Representing the 60 trillion cells that build a human body, a sperm and an egg meet, recognize each other, and fuse to form a new generation of life. The factors involved in this important membrane fusion event, fertilization, have been sought for a long time. Recently, CD9 on the egg membrane was found to be essential for fusion, but sperm-related fusion factors remain unknown. Here, by using a fusion-inhibiting monoclonal antibody and gene cloning, we identify a mouse sperm fusion-related antigen and show that the antigen is a novel immunoglobulin superfamily protein. We have termed the gene Izumo and produced a gene-disrupted mouse line. Izumo-/- mice were healthy but males were sterile. They produced normal-looking sperm that bound to and penetrated the zona pellucida but were incapable of fusing with eggs. Human sperm also contain Izumo and addition of the antibody against human Izumo left the sperm unable to fuse with zona-free hamster eggs.


Assuntos
Imunoglobulinas/química , Imunoglobulinas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Óvulo/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Sequência de Aminoácidos , Animais , Cricetinae , Cruzamentos Genéticos , Feminino , Deleção de Genes , Heterozigoto , Homozigoto , Humanos , Imunoglobulinas/deficiência , Imunoglobulinas/genética , Infertilidade Masculina/genética , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Injeções de Esperma Intracitoplásmicas
19.
Bio Protoc ; 11(22): e4233, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34909454

RESUMO

Gamete fusion, which is the final event of fertilization, is a crucial physiological event in the creation of a new fetus. In mammals, sperm IZUMO1 and oocyte IZUMO1R (JUNO) recognition play a role in triggering this process. Gamete fusion occurs through a complex but steady and unfailing intermolecular reaction because fertilization must ensure species specificity, in which fusion takes place between gametes of the same species only. Although many factors involved in this process have recently been identified, their specific contributions remain largely unknown. The current article describes detailed methods for assessment of gamete fusion in mice, visualized by fluorescent dye transfer, from unfertilized oocyte to spermatozoa. These methods are applicable not only for fixed cells but also live imaging of gametes.

20.
Elife ; 102021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871360

RESUMO

To trigger gamete fusion, spermatozoa need to activate the molecular machinery in which sperm IZUMO1 and oocyte JUNO (IZUMO1R) interaction plays a critical role in mammals. Although a set of factors involved in this process has recently been identified, no common factor that can function in both vertebrates and invertebrates has yet been reported. Here, we first demonstrate that the evolutionarily conserved factors dendrocyte expressed seven transmembrane protein domain-containing 1 (DCST1) and dendrocyte expressed seven transmembrane protein domain-containing 2 (DCST2) are essential for sperm-egg fusion in mice, as proven by gene disruption and complementation experiments. We also found that the protein stability of another gamete fusion-related sperm factor, SPACA6, is differently regulated by DCST1/2 and IZUMO1. Thus, we suggest that spermatozoa ensure proper fertilization in mammals by integrating various molecular pathways, including an evolutionarily conserved system that has developed as a result of nearly one billion years of evolution.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Evolução Molecular , Fertilização/genética , Proteínas de Membrana/genética , Oócitos/fisiologia , Espermatozoides/fisiologia , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Filogenia , Alinhamento de Sequência , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA