Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Epilepsia ; 65(3): 600-614, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38115808

RESUMO

Neurophotonic technology is a rapidly growing group of techniques that are based on the interactions of light with natural or genetically modified cells of the neural system. New optical technologies make it possible to considerably extend the tools of neurophysiological research, from the visualization of functional activity changes to control of brain tissue excitability. This opens new perspectives for studying the mechanisms underlying the development of human neurological diseases. Epilepsy is one of the most common brain disorders; it is characterized by recurrent seizures and affects >1% of the world's population. However, how seizures occur, spread, and terminate in a healthy brain is still unclear. Therefore, it is extremely important to develop appropriate models to accurately explore the causal relationship of epileptic activity. The use of neurophotonic technologies in epilepsy research falls into two broad categories: the visualization of neural epileptic activity, and the direct optical influence on neurons to induce or suppress epileptic activity. An optogenetic variant of the classical kindling model of epileptic seizures, in which activatable cells are genetically defined, is called optokindling. Research is also underway concerning the application of neurophotonic techniques for suppressing epileptic activity, aiming to bring these methods into clinical practice. This review aims to systematize and describe new approaches that use combinations of different neurophotonic methods to work with in vivo models of epilepsy. These approaches overcome many of the shortcomings associated with classical animal models of epilepsy and thus increase the effectiveness of developing new diagnostic methods and antiepileptic therapy.


Assuntos
Epilepsia , Excitação Neurológica , Animais , Humanos , Modelos Animais de Doenças , Epilepsia/tratamento farmacológico , Convulsões , Encéfalo
2.
Mol Med ; 29(1): 75, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316799

RESUMO

BACKGROUND: The significant challenge in treating triple-negative breast cancer (TNBC) lies in its high rate of distant metastasis. To address this, inhibiting metastasis formation in TNBC is vital. Rac is a key player in cancer metastasis. Previously, we developed Ehop-016, a Rac inhibitor that successfully reduced tumor growth and metastasis in mice. In this study, we assessed the effectiveness of HV-107, a derivative of Ehop-016, in inhibiting TNBC metastasis at lower doses. METHODS: Rho GTPases activity assays were performed with the use of GST-PAK beads and Rac, Rho, and Cdc42 GLISA. Cell viability was assessed through trypan blue exclusion and MTT assays. Cell cycle analysis was conducted using flow cytometry. To evaluate invading capabilities, transwell assays and invadopodia formation assays were performed. Metastasis formation studies were conducted using a breast cancer xenograft mouse model. RESULTS: HV-107 inhibited Rac activity by 50% in MDA-MB-231 and MDA-MB-468 cells at concentrations of 250-2000 nM, leading to a 90% decrease in invasion and invadopodia activity. Concentrations of 500 nM and above caused dose-dependent reductions in cell viability, resulting in up to 20% cell death after 72 h. Concentrations exceeding 1000 nM upregulated PAK1, PAK2, FAK, Pyk2, Cdc42, and Rho signallings, while Pyk2 was downregulated at 100-500 nM. Through in vitro experiments, optimal concentrations of HV-107 ranging from 250 to 500 nM were identified, effectively inhibiting Rac activity and invasion while minimizing off-target effects. In a breast cancer xenograft model, administration of 5 mg/kg HV-107 (administered intraperitoneally, 5 days a week) reduced Rac activity by 20% in tumors and decreased metastasis by 50% in the lungs and liver. No observed toxicity was noted at the tested doses. CONCLUSION: The findings indicate that HV-107 exhibits promising potential as a therapeutic medication utilizing Rac inhibition mechanisms to address metastasis formation in TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Quinase 2 de Adesão Focal , Sobrevivência Celular , Citometria de Fluxo , Xenoenxertos
3.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686276

RESUMO

The majority of glioblastomas (GBMs) recur shortly after tumor resection and recurrent tumors differ significantly from newly diagnosed GBMs, phenotypically and genetically. In this study, using a Gl261-C57Bl/6 mouse glioma implantation model, we identified significant upregulation of proline-rich tyrosine kinase Pyk2 and focal adhesion kinase (FAK) phosphorylation levels-pPyk2 (579/580) and pFAK (925)-without significant modifications in total Pyk2 and FAK protein expression in tumors regrown after surgical resection, compared with primary implanted tumors. Previously, we demonstrated that Pyk2 and FAK are involved in the regulation of tumor cell invasion and proliferation and are associated with reduced overall survival. We hypothesized that the use of inhibitors of Pyk2/FAK in the postsurgical period may reduce the growth of recurrent tumors. Using Western blot analysis and confocal immunofluorescence approaches, we demonstrated upregulation of Cyclin D1 and the Ki67 proliferation index in tumors regrown after resection, compared with primary implanted tumors. Treatment with Pyk2/FAK inhibitor PF-562271, administered through oral gavage at 50 mg/kg daily for two weeks beginning 2 days before tumor resection, reversed Pyk2/FAK signaling upregulation in recurrent tumors, reduced tumor volume, and increased animal survival. In conclusion, the use of Pyk2/FAK inhibitors can contribute to a delay in GBM tumor regrowth after surgical resection.


Assuntos
Glioblastoma , Glioma , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Camundongos Endogâmicos C57BL , Quinase 2 de Adesão Focal/genética , Implantação do Embrião
4.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35054848

RESUMO

Gap junctions (GJs) are intercellular junctions that allow the direct transfer of ions and small molecules between neighboring cells, and GJs between astrocytes play an important role in the development of various pathologies of the brain, including regulation of the pathological neuronal synchronization underlying epileptic seizures. Recently, we found that a pathological change is observed in astrocytes during the ictal and interictal phases of 4-aminopyridin (4-AP)-elicited epileptic activity in vitro, which was correlated with neuronal synchronization and extracellular epileptic electrical activity. This finding raises the question: Does this signal depend on GJs between astrocytes? In this study we investigated the effect of the GJ blocker, carbenoxolone (CBX), on epileptic activity in vitro and in vivo. Based on the results obtained, we came to the conclusion that the astrocytic syncytium formed by GJ-associated astrocytes, which is responsible for the regulation of potassium, affects the formation of epileptic activity in astrocytes in vitro and epileptic seizure onset. This effect is probably an important, but not the only, mechanism by which CBX suppresses epileptic activity. It is likely that the mechanisms of selective inhibition of GJs between astrocytes will show important translational benefits in anti-epileptic therapies.


Assuntos
Anticonvulsivantes/uso terapêutico , Carbenoxolona/uso terapêutico , Epilepsia/tratamento farmacológico , 4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Eletrocorticografia , Epilepsia/patologia , Epilepsia/fisiopatologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Hipocampo/patologia , Humanos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Potássio/metabolismo
5.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137462

RESUMO

Immunostaining with specific antibodies has shown that innate amyloid beta (Aß) is accumulated naturally in glioma tumors and nearby blood vessels in a mouse model of glioma. In immunofluorescence images, Aß peptide coincides with glioma cells, and enzyme-linked immunosorbent assay (ELISA) have shown that Aß peptide is enriched in the membrane protein fraction of tumor cells. ELISAs have also confirmed that the Aß(1-40) peptide is enriched in glioma tumor areas relative to healthy brain areas. Thioflavin staining revealed that at least some amyloid is present in glioma tumors in aggregated forms. We may suggest that the presence of aggregated amyloid in glioma tumors together with the presence of Aß immunofluorescence coinciding with glioma cells and the nearby vasculature imply that the source of Aß peptides in glioma can be systemic Aß from blood vessels, but this question remains unresolved and needs additional studies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos C57BL
6.
Molecules ; 24(13)2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261621

RESUMO

In vivo tissue transparency in the visible light spectrum is beneficial for many research applications that use optical methods, whether it involves in vivo optical imaging of cells or their activity, or optical intervention to affect cells or their activity deep inside tissues, such as brain tissue. The classical view is that a tissue is transparent if it neither absorbs nor scatters light, and thus absorption and scattering are the key elements to be controlled to reach the necessary transparency. This review focuses on the latest genetic and chemical approaches for the decoloration of tissue pigments to reduce visible light absorption and the methods to reduce scattering in live tissues. We also discuss the possible molecules involved in transparency.


Assuntos
Imagem Óptica/métodos , Optogenética/métodos , Animais , Humanos , Luz , Espalhamento de Radiação
7.
Microsc Microanal ; 24(5): 545-552, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30253817

RESUMO

Transparent cells in the vertebrate optical tract, such as lens fiber cells and corneal epithelium cells, have specialized proteins that somehow permit only a low level of light scattering in their cytoplasm. It has been shown that both cell types contain (1) beaded intermediate filaments as well as (2) α-crystallin globulins. It is known that genetic and chemical alterations to these specialized proteins induce cytoplasmic opaqueness and visual complications. Crystallins were described previously in the retinal Müller cells of frogs. In the present work, using immunocytochemistry, fluorescence confocal imaging, and immuno-electron microscopy, we found that αA-crystallins are present in the cytoplasm of retinal Müller cells and in the photoreceptors of rats. Given that Müller glial cells were recently described as "living light guides" as were photoreceptors previously, we suggest that αA-crystallins, as in other highly transparent cells, allow Müller cells and photoreceptors to minimize intraretinal scattering during retinal light transmission.


Assuntos
Células Ependimogliais/metabolismo , Cristalino/metabolismo , Neuroglia/metabolismo , Células Fotorreceptoras/metabolismo , alfa-Cristalinas/metabolismo , Animais , Citoplasma/metabolismo , Células Ependimogliais/citologia , Olho/patologia , Imuno-Histoquímica , Cristalino/química , Luz , Microscopia Imunoeletrônica , Imagem Óptica , Células Fotorreceptoras/citologia , Ratos , Ratos Sprague-Dawley , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Cadeia A de alfa-Cristalina/química , Cadeia A de alfa-Cristalina/metabolismo , alfa-Cristalinas/química
8.
Int J Mol Sci ; 19(6)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890636

RESUMO

While it is known that amyloid beta (Aß) deposits are found in different tissues of both Alzheimer's disease (AD) patients and healthy individuals, there remain questions about the physiological role of these deposits, the origin of the Aß peptide, and the mechanisms of its localization to the tissues. Using immunostaining with specific antibodies, as well as enzyme-linked immunosorbent assay, this study demonstrated Aß40 peptide accumulation in the skin during local experimental photothrombosis in mice. Specifically, Aß peptide accumulation was concentrated near the dermal blood vessels in thrombotic skin. It was also studied whether the released peptide affects microorganisms. Application of Aß40 (4 µM) to the external membrane of yeast cells significantly increased membrane conductance with no visible effect on mouse host cells. The results suggest that Aß release in the skin is related to skin injury and thrombosis, and occurs along with clotting whenever skin is damaged. These results support the proposition that Aß release during thrombosis serves as part of a natural defense against infection.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Pele/metabolismo , Trombose/metabolismo , Animais , Astrócitos/metabolismo , Membrana Celular/metabolismo , Derme/irrigação sanguínea , Feminino , Masculino , Camundongos Endogâmicos C57BL , Saccharomyces cerevisiae/metabolismo
9.
Mol Pharm ; 13(8): 2844-54, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27283751

RESUMO

Proteins often possess highly specific biological activities that make them potential therapeutics, but their physical and chemical instabilities during formulation, storage, and delivery have limited their medical use. Therefore, engineering of nanosized vehicles to stabilize protein therapeutics and to allow for targeted treatment of complex diseases, such as cancer, is of considerable interest. A micelle-like nanoparticle (NP) was designed for both, tumor targeting and stimulus-triggered release of the apoptotic protein cytochrome c (Cyt c). This system is composed of a Cyt c NP stabilized by a folate-receptor targeting amphiphilic copolymer (FA-PEG-PLGA) attached to Cyt c through a redox-sensitive bond. FA-PEG-PLGA-S-S-Cyt c NPs exhibited excellent stability under extracellular physiological conditions, whereas once in the intracellular reducing environment, Cyt c was released from the conjugate. Under the same conditions, the folate-decorated NP reduced folate receptor positive HeLa cell viability to 20%, while the same complex without FA only reduced it to 80%. Confocal microscopy showed that the FA-PEG-PLGA-S-S-Cyt c NPs were internalized by HeLa cells and were capable of endosomal escape. The specificity of the folate receptor-mediated internalization was confirmed by the lack of uptake by two folate receptor deficient cell lines: A549 and NIH-3T3. Finally, the potential as antitumor therapy of our folate-decorated Cyt c-based NPs was confirmed with an in vivo brain tumor model. In conclusion, we were able to create a stable, selective, and smart nanosized Cyt c delivery system.


Assuntos
Citocromos c/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Células A549 , Animais , Apoptose , Citocromos c/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Glioma/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Células NIH 3T3 , Polímeros/química
10.
Microsc Microanal ; 22(2): 379-86, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26926795

RESUMO

Specialized intermediate filaments (IFs) have critical importance for the clearness and uncommon transparency of vertebrate lens fiber cells, although the physical mechanisms involved are poorly understood. Recently, an unusual low-scattering light transport was also described in retinal Müller cells. Exploring the function of IFs in Müller cells, we have studied the morphology and distribution pattern of IFs and other cytoskeletal filaments inside the Müller cell main processes in the foveolar part of the avian (pied flycatcher) retina. We found that some IFs surrounded by globular nanoparticles (that we suggest are crystallines) are present in almost every part of the Müller cells that span the retina, including the microvilli. Unlike IFs implicated in the mechanical architecture of the cell, these IFs are not connected to any specific cellular membranes. Instead, they are organized into bundles, passing inside the cell from the endfeet to the photoreceptor, following the geometry of the processes, and repeatedly circumventing numerous obstacles. We believe that the presently reported data effectively confirm that the model of nanooptical channels built of the IFs may provide a viable explanation of Müller cell transparency.


Assuntos
Células Ependimogliais/ultraestrutura , Filamentos Intermediários/ultraestrutura , Retina/citologia , Aves Canoras/anatomia & histologia , Animais , Fenômenos Biofísicos , Células Ependimogliais/química , Células Ependimogliais/fisiologia , Retina/fisiologia , Aves Canoras/fisiologia
11.
Mol Pharm ; 10(4): 1450-8, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23458604

RESUMO

Polyamines are ubiquitous organic cations implicated in many physiological processes. Because they are positively charged at physiological pH, carrier-mediated systems are necessary for effective membrane permeation, but the identity of specific polyamine transporter proteins in eukaryotic cells remains unclear. Polyspecific organic cation transporters (OCTs) interact with many natural and xenobiotic monovalent cations and have been reported to transport dicationic compounds, including the short polyamine putrescine. In this study, we used Xenopus oocytes expressing mammalian OCT1 (SLC22A1), OCT2 (SLC22A2), or OCT3 (SLC22A3) to assess binding and transport of longer-chain polyvalent polyamines. In OCT-expressing oocytes, [(3)H]MPP(+) uptake rates were 15- to 35-fold higher than in noninjected oocytes, whereas those for [(3)H]spermidine increased more modestly above the background, up to 3-fold. This reflected up to 20-fold lower affinity for spermidine than for MPP(+); thus, K(0.5) for MPP(+) was ~50 µM in OCT1, ~170 µM in OCT2, and ~60 µM in OCT3, whereas for spermidine, K(0.5) was ~1 mM in OCT1, OCT2, and OCT3. J(max) values for MPP(+) and spermidine were within the same range, suggesting that both compounds are transported at a similar turnover rate. To gain further insight into OCT substrate specificity, we screened a selection of structural polyamine analogues for effect on [(3)H]MPP(+) uptake. In general, blocking potency increased with overall hydrophobic character, which indicates that, as for monovalent cations, hydrophobicity is a major requirement for recognition in polyvalent OCT substrates and inhibitors. Our results demonstrate that the natural polyamines are low affinity, but relatively high turnover, substrates for OCTs. The identification of OCTs as polyamine transport systems may contribute to further understanding of the mechanisms involved in polyamine homeostasis and aid in the design of polyamine-like OCT-targeted drugs.


Assuntos
Fator 2 de Transcrição de Octâmero/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/metabolismo , Transportador 1 de Cátions Orgânicos/metabolismo , Poliaminas/metabolismo , Animais , Transporte Biológico , Cátions , Cristalografia por Raios X , Feminino , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Oócitos/efeitos dos fármacos , Putrescina/metabolismo , Espermidina/metabolismo , Especificidade por Substrato , Xenopus laevis
12.
Photochem Photobiol ; 99(4): 1092-1096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36403200

RESUMO

One of the known important functions of hair is protection from extensive sunlight. This protection is accomplished in large part due to natural hair pigmentation which is known to reflect the number of melanin granules (melanosomes) in the hair shaft, and melanin variants. Melanin takes in excessive light energy and converts it to heat in a process called absorption; heat is then dissipated into the environment as infrared radiation, thereby protecting the underlying skin. We used transmission electron microscopy (TEM) to visualize the melanosome counts in samples of human hair, and used thermal microscopy to measure the temperature changes of the samples when exposed to green and blue light lasers. In our experiments green light conversion to heat was highly correlated to the number of melanosomes, whereas blue light conversion to heat was less correlated, which may be because the reddish melanosomes it contains are less effective in absorbing energy from the blue spectrum of light. Anyway, we have shown the metals accumulation in the melanin can be easily visualized with TEM. We confirmed that the amount of melanin granules in human hair defines the conversion to heat of light energy in the visible spectrum.


Assuntos
Temperatura Alta , Melaninas , Humanos , Melanossomas , Pele , Cabelo
13.
J Alzheimers Dis ; 93(1): 307-319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970904

RESUMO

BACKGROUND: An increasing number of experimental and clinical studies show a link between Alzheimer's disease and heart diseases such as heart failure, ischemic heart disease, and atrial fibrillation. However, the mechanisms underlying the potential role of amyloid-ß (Aß) in the pathogenesis of cardiac dysfunction in Alzheimer's disease remain unknown. We have recently shown the effects of Aß1 - 40 and Aß1 - 42 on cell viability and mitochondrial function in cardiomyocytes and coronary artery endothelial cells. OBJECTIVE: In this study, we investigated the effects of Aß1 - 40 and Aß1 - 42 on the metabolism of cardiomyocytes and coronary artery endothelial cells. METHODS: Gas chromatography-mass spectrometry was used to analyze metabolomic profiles of cardiomyocytes and coronary artery endothelial cells treated with Aß1 - 40 and Aß1 - 42. In addition, we determined mitochondrial respiration and lipid peroxidation in these cells. RESULTS: We found that the metabolism of different amino acids was affected by Aß1 - 42 in each cell type, whereas the fatty acid metabolism is consistently disrupted in both types of cells. Lipid peroxidation was significantly increased, whereas mitochondrial respiration was reduced in both cell types in response to Aß1 - 42. CONCLUSION: This study revealed the disruptive effects of Aß on lipid metabolism and mitochondria function in cardiac cells.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Células Endoteliais/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/metabolismo
14.
Front Neurol ; 14: 1201104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483450

RESUMO

A product of the immediate early gene Arc (Activity-regulated cytoskeleton-associated protein or Arc protein) of retroviral ancestry resides in the genome of all tetrapods for millions of years and is expressed endogenously in neurons. It is a well-known protein, very important for synaptic plasticity and memory consolidation. Activity-dependent Arc expression concentrated in glutamatergic synapses affects the long-time synaptic strength of those excitatory synapses. Because it modulates excitatory-inhibitory balance in a neuronal network, the Arc gene itself was found to be related to the pathogenesis of epilepsy. General Arc knockout rodent models develop a susceptibility to epileptic seizures. Because of activity dependence, synaptic Arc protein synthesis also is affected by seizures. Interestingly, it was found that Arc protein in synapses of active neurons self-assemble in capsids of retrovirus-like particles, which can transfer genetic information between neurons, at least across neuronal synaptic boutons. Released Arc particles can be accumulated in astrocytes after seizures. It is still not known how capsid assembling and transmission timescale is affected by seizures. This scientific field is relatively novel and is experiencing swift transformation as it grapples with difficult concepts in light of evolving experimental findings. We summarize the emergent literature on the subject and also discuss the specific rodent models for studying Arc effects in epilepsy. We summarized both to clarify the possible role of Arc-related pseudo-viral particles in epileptic disorders, which may be helpful to researchers interested in this growing area of investigation.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37205236

RESUMO

Dendritic cells (DC) are important antigen-presenting cells that have abilities to induce and maintain T-cell immunity, or attenuate it during hyperimmunization. Additional activation of DCs may be useful for vaccination purposes. Imiquimod is known to be a specific agonist of the Toll-like receptors (TLR7), which are located mainly on DCs. To study the effect of DC stimulation on the effectiveness of an HIV-1 p55 gag DNA vaccine in a mice model, we employed 25, 50, and 100 nM of Imiquimod as an adjuvant. Subsequently, Western blot analysis was used to quantify p55 protein production after the immunization. To characterize T-cells immune response, both the frequency of IFN-γ -secreting cells and IFN-γ and IL-4 production were measured, via an ELIspot assay and ELISA, respectively. Low concentrations of Imiquimod were found to effectively stimulate Gag production and the magnitude of the T-cell immune response, whereas higher concentrations reduced vaccination effects. Our results show that the adjuvant effects of Imiquimod depend on concentration. The use of Imiquimod may be helpful to study DC to T cell communication, including possible induction of immunotolerance.

16.
Life (Basel) ; 13(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004334

RESUMO

HIV-associated neurocognitive disorders (HANDs) continue to impact patients despite antiretroviral therapy. A combination of antiretroviral therapies can diminish the HIV viral load to near undetectable levels, but fails to preserve neurocognitive integrity. The cytokine leukemia inhibitory factor (LIF) has shown neuroprotective properties that could mitigate neurodegeneration in HANDs. The LIF promotes neurogenesis, neural cell differentiation, and survival. Combination antiretroviral therapy reduces severe forms of HANDs, but neurocognitive impairment persists; additionally, some antiretrovirals have additional adverse neurotoxic effects. The LIF counteracts neurotoxic viral proteins and limits neural cell damage in models of neuroinflammation. Adding the LIF as an adjuvant therapy to enhance neuroprotection merits further research for managing HANDs. The successful implementation of the LIF to current therapies would contribute to achieving a better quality of life for the affected population.

17.
J Biophotonics ; 15(6): e202200002, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35243792

RESUMO

Eye shine in the dark has attracted many researchers to the field of eye optics, but the initial studies of subwavelength arrangements in tapetum began only with the development of electronic microscopy at the end of the 20th century. As a result of a number of studies, it was shown that the reflective properties of the tapetum are due to their specialized cellular subwavelength microstructure (photonic crystals). These properties, together with the mutual orientation of the crystals, lead to a significant increase in reflection, which, in turn, enhances the sensitivity of the eye. In addition, research confirmed that optical mechanisms of reflection in the tapetum are very similar even for widely separated species. Due to progress in the field of nano-optics, researchers now have a better understanding of the main principles of this phenomenon. In this review, we summarize electron microscopic and functional studies of tapetal structures in the main vertebrate classes. This allows data on the microstructure of the tapetum to be used to improve our understanding of the visual system.


Assuntos
Corioide , Vertebrados , Animais , Corioide/ultraestrutura , Microscopia Eletrônica
18.
FEBS Open Bio ; 12(1): 95-105, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592066

RESUMO

Accumulation of amyloid in breast cancer is a well-known phenomenon, but only immunoglobulin light-chain amyloidosis (AL) or transthyretin (TTR) amyloid had been detected in human breast tumor samples previously. We recently reported that another amyloidogenic peptide, amyloid beta (Aß), is present in an aggregated form in animal and human high-grade gliomas and suggested that it originates systemically from the blood, possibly generated by platelets. To study whether breast cancers are also associated with these Aß peptides and in what form, we used a nude mouse model inoculated with triple-negative inflammatory breast cancer cell (SUM-149) xenografts, which develop noticeable tumors. Immunostaining with two types of specific antibodies for Aß identified the clear presence of Aß peptides associated with (a) carcinoma cells and (b) extracellular aggregated amyloid (also revealed by Congo red and thioflavin S staining). Aß peptides, in both cells and in aggregated amyloid, were distributed in clear gradients, with maximum levels near blood vessels. We detected significant presence of amyloid precursor protein (APP) in the walls of blood vessels of tumor samples, as well as in carcinoma cells. Finally, we used ELISA to confirm the presence of elevated levels of mouse-generated Aß40 in tumors. We conclude that Aß in inflammatory breast cancer tumors, at least in a mouse model, is always present and is concentrated near blood vessels. We also discuss here the possible pathways of Aß accumulation in tumors and whether this phenomenon could represent the specific signature of high-grade cancers.


Assuntos
Doença de Alzheimer , Neoplasias Inflamatórias Mamárias , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Xenoenxertos , Humanos , Camundongos , Camundongos Transgênicos
19.
Epilepsia ; 51(9): 1707-13, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20831751

RESUMO

PURPOSE: KCNJ10 encodes subunits of inward rectifying potassium (Kir) channel Kir4.1 found predominantly in glial cells within the brain. Genetic inactivation of these channels in glia impairs extracellular K(+) and glutamate clearance and produces a seizure phenotype. In both mice and humans, polymorphisms and mutations in the KCNJ10 gene have been associated with seizure susceptibility. The purpose of the present study was to determine whether there are differences in Kir channel activity and potassium- and glutamate-buffering capabilities between astrocytes from seizure resistant C57BL/6 (B6) and seizure susceptible DBA/2 (D2) mice that are consistent with an altered K(+) channel activity as a result of genetic polymorphism of KCNJ10. METHODS: Using cultured astrocytes and hippocampal brain slices together with whole-cell patch-clamp, we determined the electrophysiologic properties, particularly K(+) conductances, of B6 and D2 mouse astrocytes. Using a colorimetric assay, we determined glutamate clearance capacity by B6 and D2 astrocytes. RESULTS: Barium-sensitive Kir currents elicited from B6 astrocytes are substantially larger than those elicited from D2 astrocytes. In addition, potassium and glutamate buffering by D2 cortical astrocytes is impaired, relative to buffering by B6 astrocytes. DISCUSSION: In summary, the activity of Kir4.1 channels differs between seizure-susceptible D2 and seizure-resistant B6 mice. Reduced activity of Kir4.1 channels in astrocytes of D2 mice is associated with deficits in potassium and glutamate buffering. These deficits may, in part, explain the relatively low seizure threshold of D2 mice.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio/fisiologia , Potássio/metabolismo , Convulsões/genética , Convulsões/metabolismo , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/fisiologia , Animais , Astrócitos/fisiologia , Bário/farmacologia , Canalopatias/genética , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Predisposição Genética para Doença/genética , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Técnicas de Patch-Clamp , Polimorfismo de Nucleotídeo Único/genética , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/fisiopatologia
20.
Bol Asoc Med P R ; 102(3): 5-12, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-23875515

RESUMO

1,1 '-Diethyl-2,2'-cyanine iodide (decynium22; D22) is a potent blocker of the organic cation family of transporters (EMT/OCT) known to move endogenous monoamines like dopamine and norepinephrine across cell membranes. Decynium22 is a cation with a relatively high affinity for all members of the OCT family in both human and rat cells. The mechanism through which decynium22 blocks OCT transporters are poorly understood. We tested the hypothesis that denynium22 may compete with monoamines utilizing OCT to permeate the cells. Using the ability of D22 to aggregate and produce fluorescence at 570 nm, we measured D22 uptake in cultured astrocytes. The rate of D22 uptake was strongly depressed by acid pH and by elevated external K+. The rate of uptake was similar to that displayed by 4-(4-(dimethylamino)-styryl)-N-methylpyridinium (ASP+), a well established substrate for OCT and high-affinity Na+-dependent monoamine transporters. These data were supported by measurement of electrogenic uptake using whole cell voltage clamp recording. Decynium22 depressed norepinephrine, but not glutamate uptake. These data are also consistent with the described OCT transporter characteristics. Taken together, our results suggest that decynium22 accumulation might be a useful instrument to study monoamine transport in the brain, and particularly in astrocytes, where they may play a prominent role in monoamine uptake during brain dysfunction related to monoamines (like Parkinson disease) and drug addiction.


Assuntos
Astrócitos/fisiologia , Potenciais da Membrana , Proteínas de Transporte de Cátions Orgânicos/fisiologia , Quinolinas/metabolismo , Animais , Células Cultivadas , Fluorescência , Concentração de Íons de Hidrogênio , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA