RESUMO
Pregnancy is characterized by a delicate immune balance; therefore, infectious diseases might increase the risk of adverse pregnancy outcomes (APOs). Here, we hypothesize that pyroptosis, a unique cell death pathway mediated by the NLRP3 inflammasome, could link SARS-CoV-2 infection, inflammation, and APOs. Two blood samples were collected from 231 pregnant women at 11-13 weeks of gestation and in the perinatal period. At each time point, SARS-CoV-2 antibodies and neutralizing antibody titers were measured by ELISA and microneutralization (MN) assays, respectively. Plasmatic NLRP3 was determined by ELISA. Fourteen miRNAs selected for their role in inflammation and/or pregnancy were quantified by qPCR and further investigated by miRNA-gene target analysis. NLRP3 levels were positively associated with nine circulating miRNAs, of which miR-195-5p was increased only in MN+ women (p-value = 0.017). Pre-eclampsia was associated with a decrease in miR-106a-5p (p-value = 0.050). miR-106a-5p (p-value = 0.026) and miR-210-3p (p-value = 0.035) were increased in women with gestational diabetes. Women giving birth to small for gestational age babies had lower miR-106a-5p and miR-21-5p (p-values = 0.001 and 0.036, respectively), and higher miR-155-5p levels (p-value = 0.008). We also observed that neutralizing antibodies and NLRP3 concentrations could affect the association between APOs and miRNAs. Our findings suggest for the first time a possible link between COVID-19, NLRP3-mediated pyroptosis, inflammation, and APOs. Circulating miRNAs might be suitable candidates to gain a comprehensive view of this complex interplay.
Assuntos
COVID-19 , MicroRNA Circulante , MicroRNAs , Humanos , Gravidez , Feminino , Resultado da Gravidez , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose , SARS-CoV-2/metabolismo , MicroRNAs/metabolismo , InflamaçãoRESUMO
BACKGROUND: Maternal exposure to air pollutants has been associated with pregnancy complications and adverse birth outcomes. Endothelial dysfunction, an imbalance in vascular function, during pregnancy is considered a key element in the development of pre-eclampsia. Environmental exposure to particulate matter (PM) during the first trimester of pregnancy might increase maternal inflammatory status thus affecting fetal growth, possibly leading to preterm delivery. OBJECTIVES: The purpose of the study was to evaluate possible effects of PM10 and PM2.5 exposure on fetal growth in healthy pregnant women at the end of the first trimester of pregnancy by investigating the relationship between circulating biomarkers of inflammation (IL-6), early systemic prothrombotic effects (CRP, plasma fibrinogen, PAI-1) and endothelial dysfunction (sICAM-1 and sVCAM-1). METHODS: 295 pregnant women were recruited. Individual PM exposure was assigned to each subject by calculating the mean of PM10 and PM2.5 daily values observed during the 30, 60, and 90 days preceding enrolment (long-term) and single lag days back to fourteen days (short-term), and circulating plasma biomarkers were determined. RESULTS: For long-term exposure, we observed an increase in sVCAM-1 and a decrease of PAI-1 levels for each 10 µg/m3 increase in PM10 concentration. Decreases in IL-6 and CRP levels were associated with each 10 µg/m3 PM2.5 increase. For short-term exposure, the levels of sVCAM-1 and PAI-1 were found to be associated with PM10 exposure, whereas fibrinogen levels were associated with PM2.5 exposure. Maternal plasmatic fibrinogen levels were negatively associated with the crown-rump length (p-value = 0.008). DISCUSSION: The present study showed that both long- and short-term exposures to PM are associated with changes in circulating levels of biomarkers in pregnant women reflecting systemic inflammation and endothelial dysfunction/activation. Our findings support the hypothesis that inflammation and endothelial dysfunction might have a central role in modulating the detrimental effects of air pollution exposure during pregnancy.
Assuntos
Poluição do Ar , Exposição Materna , Complicações na Gravidez , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Biomarcadores , Exposição Ambiental/análise , Feminino , Fibrinogênio , Humanos , Inflamação/induzido quimicamente , Interleucina-6/sangue , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Inibidor 1 de Ativador de Plasminogênio/sangue , Gravidez , Complicações na Gravidez/induzido quimicamente , Primeiro Trimestre da GravidezRESUMO
BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare highly aggressive tumor strongly associated with asbestos exposure and characterized by poor prognosis. Currently, diagnosis is based on invasive techniques, thus there is a need of identifying non-invasive biomarkers for early detection of the disease among asbestos-exposed subjects. In the present study, we measured the plasmatic concentrations of Mesothelin, Fibulin-3, and HMGB1 protein biomarkers, and of hsa-miR-30e-3p and hsa-miR-103a-3p Extracellular-Vesicles- embedded micro RNAs (EV-miRNAs). We tested the ability of these biomarkers to discriminate between MPM and PAE subjects alone and in combination. METHODS: the study was conducted on a population of 26 patients with MPM and 54 healthy subjects with previous asbestos exposure (PAE). Mesothelin, Fibulin-3, and HMGB1 protein biomarkers were measured by the enzyme-linked immunosorbent assay (ELISA) technique; the levels of hsa-miR-30e-3p and hsa-miR-103a-3p EV-miRNAs was assessed by quantitative real-time PCR (qPCR). RESULTS: the most discriminating single biomarker resulted to be Fibulin-3 (AUC 0.94 CI 95% 0.88-1.0; Sensitivity 88%; Specificity 87%). After investigating the different possible combinations, the best performance was obtained by the three protein biomarkers Mesothelin, Fibulin-3, and HMGB1 (AUC 0.99 CI 95% 0.97-1.0; Sensitivity 96%; Specificity 93%). CONCLUSIONS: the results obtained contribute to identifying new potential non-invasive biomarkers for the early diagnosis of MPM in high-risk asbestos-exposed subjects. Further studies are needed to validate the evidence obtained, in order to assess the reliability of the proposed biomarker panel.
Assuntos
Proteína HMGB1 , Mesotelioma Maligno , MicroRNAs , Humanos , Reprodutibilidade dos TestesRESUMO
Background During COVID-19 outbreak, Italy was the first country in Europe to be heavily affected with an intensive care unit mortality of 26%. In order to reduce this percentage, physicians should establish clear and objective criteria to stratify COVID-19 patients at high risk of in-hospital death. Thus, the aim has been to test a large spectrum of variables ranging from clinical evaluation to laboratory biomarkers to identify which parameter would best predict all-cause in-hospital mortality in COVID-19 patients. Design observational study. Results Multivariate Cox regression analysis showed that each 5 years of increase in age corresponded to a hazard ratio (HR) of 1.28 (95% CI 1.00-1.65, P = .050); each increment of 803 ng/L of N-terminal pro-B-type natriuretic peptide (NT-proBNP) corresponded to a HR of 1.24 (95% CI 1.11-1.39, P < .001); each increment of 58 ng/L of interleukin (IL)-6 corresponded to a HR of 1.23 (95% CI 1.09-1.40, P < .001), and each increment of 250 U/L of lactate dehydrogenase (LDH) corresponded to a HR of 1.23 (95% CI 1.10-1.37, P < .001). According to the calculated cut-points for age (≥70 years), NT-proBNP (≥803 ng/L), IL-6 (≥58 ng/L) and LDH (≥371 U/L) when 2 out of these 4 were overcome, the HR was 2.96 (95% CI 1.97-4.45, P < .001). Conclusion In COVID-19 patients, besides age, the evaluation of three biochemical parameters, available in few hours after hospital admission can predict in-hospital mortality regardless of other comorbidities.
Assuntos
COVID-19/mortalidade , Mortalidade Hospitalar , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Fatores Etários , Idoso , Biomarcadores , COVID-19/sangue , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , SARS-CoV-2RESUMO
BACKGROUND: Exercise is recognized to evoke multisystemic adaptations that, particularly in obese subjects, reduce body weight, improve glucometabolic control, counteract sarcopenia, and lower the risk of cardiometabolic diseases. Understanding the molecular and cellular mechanisms of exercise-induced benefits is of great interest due to the therapeutic implications against obesity. OBJECTIVES AND METHODS: The aim of the present study was to evaluate time-related changes in size distribution and cell origin of extracellular vesicles (EVs) in obese and normal-weight subjects who underwent a moderate-intensity exercise on a treadmill (at 60% of their VO2max). Blood samples were drawn before, immediately at the end of the exercise and during the postexercise recovery period (3 and 24 h). Circulating EVs were analyzed by a nanoparticle tracking analysis and flow cytometry after labeling with the following cell-specific markers: CD14 (monocyte/macrophage), CD61 (platelet), CD62E (activated endothelium), CD105 (total endothelium), SCGA (skeletal muscle), and FABP (adipose tissue). RESULTS: In all subjects, acute exercise reduced the release of total (i.e., 30-700 nm) EVs in circulation, predominantly EVs in the microvesicle size range (i.e., 130-700 nm EVs). The postexercise release of microvesicles was higher in normal-weight than obese subjects; after exercise, circulating levels of exosomes (i.e., 30-130 nm EVs) and microvesicles were, respectively, lower and higher in females than males. In all experimental subgroups (males vs. females and obese vs. normal-weight subjects), acute exercise reduced and increased, respectively, CD61 + and SCGA + EVs, being the effect on CD61 + EVs prolonged up to 24 h after the end of the test with subjects in resting conditions. Total EVs, exosomes, and CD61 + EVs were associated with HOMA-IR. CONCLUSIONS: Though preliminary, the results of the present study show that a single bout of acute exercise modulates the release of EVs in circulation, which are tissue-, sex-, and BMI specific, suggesting that the exercise-related benefits might depend upon a complex interaction of tissue, endocrine, and metabolic factors.
Assuntos
Índice de Massa Corporal , Exercício Físico/fisiologia , Vesículas Extracelulares/química , Obesidade , Tecido Adiposo/metabolismo , Adolescente , Adulto , Criança , Vesículas Extracelulares/classificação , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Especificidade de Órgãos , Adulto JovemRESUMO
OBJECTIVES: to evaluate the effect of air pollution (ozone - O3 and particulate matter <=10 µm and <=2.5 µm - PM10 and PM2.5) on the severity of Raynaud's phenomenon (RP) secondary to systemic sclerosis (SSc). DESIGN: cross-sectional, observational, and single centre study. SETTING AND PARTICIPANTS: all consecutive SSc patients residing in Lombardy (Northern Italy) were enrolled. PM10, PM2.5, and O3 concentrations were calculated for each patient at municipality resolution in the week before the evaluation. Similar considerations were made for meteorological variables (temperature and humidity). MAIN OUTCOME MEASURES: patients were asked to assess RP severity during the week before the evaluation according to a visual analogue scale (VAS). Ordinal logistic regression models were fitted to evaluate the short-term effect of temperature and air pollution with respect to RP. A univariate linear regression model was created to consider the association between temperature and pollutants. RESULTS: in this study, 87 SSc patients were enrolled. Temperature was confirmed to strongly influence RP severity. PM10 and PM.5 were found to significantly worsen RP severity for the first four days before the evaluation, including the day of the visit, and as mean up to six days before the evaluation. O3 seemed to exert a protective effect on RP severity that was significant for the first four days before the evaluation, including the day of the visit, and as mean up to seven days before the evaluation. CONCLUSIONS: since the overwhelming effect of temperature on RP, final conclusions about the exact contribution of pollutants on RP severity cannot be drawn because of the strong inter-correlation between air pollution and temperature.
Assuntos
Poluentes Atmosféricos , Poluição do Ar/estatística & dados numéricos , Doença de Raynaud/epidemiologia , Escleroderma Sistêmico , Temperatura , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Cidades , Estudos Transversais , Humanos , Itália/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/epidemiologiaRESUMO
Extracellular vesicles (EVs) are important components of the metastatic niche and are crucial in infiltration, metastasis, and immune tolerance processes during tumorigenesis. We hypothesized that human endogenous retroviruses (HERV) positive EVs derived from tumor cellsmay have a role in modulating the innate immune response. The study was conducted in two different colorectal cancer cell lines, representing different stages of cancer development: Caco-2, derived from a non-metastatic colorectal adenocarcinoma, and SK-CO-1, derived from metastatic colorectal adenocarcinoma (ascites). Both cell lines were treated with decitabine to induce global hypomethylation and to reactivate HERV expression. EVs were quantified by nanoparticle tracking analysis, and HERV-positive EV concentrations were measured by flow cytometry. The effect of EVs isolated from both untreated and decitabine-treated cells on the innate immune response was evaluated by injecting them in zebrafish embryos and then assessing Interleukin 1ß (IL1-ß), Interleukin 10 (IL-10), and the myeloperoxidase (mpx) expression levels by real-time qPCR. Interestingly, HERV-K positive EVs concentrations were significantly associated with a reduced expression of IL1-ß and mpx, supporting our hypothesis that HERV-positive EVs may act as immunomodulators in tumor progression. The obtained results open new perspectives about the modulation of the immune response in cancer therapy.
Assuntos
Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Retrovirus Endógenos/fisiologia , Vesículas Extracelulares/metabolismo , Imunidade Inata , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA , Modelos Animais de Doenças , Humanos , Peixe-ZebraRESUMO
Objective The aim of this study was to explore whether the Variable Lifting Index (VLI) can be corrected for cumulative mass and thus test its efficacy in predicting the risk of low-back pain (LBP). Background A validation study of the VLI method was published in this journal reporting promising results. Although several studies highlighted a positive correlation between cumulative load and LBP, cumulative mass has never been considered in any of the studies investigating the relationship between manual material handling and LBP. Method Both VLI and cumulative mass were calculated for 2,374 exposed subjects using a systematic approach. Due to high variability of cumulative mass values, a stratification within VLI categories was employed. Dummy variables (1-4) were assigned to each class and used as a multiplier factor for the VLI, resulting in a new index (VLI_CMM). Data on LBP were collected by occupational physicians at the study sites. Logistic regression was used to estimate the risk of acute LBP within levels of risk exposure when compared with a control group formed by 1,028 unexposed subjects. Results Data showed greatly variable values of cumulative mass across all VLI classes. The potential effect of cumulative mass on damage emerged as not significant ( p value = .6526). Conclusion When comparing VLI_CMM with raw VLI, the former failed to prove itself as a better predictor of LBP risk. Application To recognize cumulative mass as a modifier, especially for lumbar degenerative spine diseases, authors of future studies should investigate potential association between the VLI and other damage variables.
Assuntos
Fenômenos Biomecânicos/fisiologia , Remoção , Dor Lombar/prevenção & controle , National Institute for Occupational Safety and Health, U.S./normas , Doenças Profissionais/prevenção & controle , Medição de Risco/métodos , Adulto , Humanos , Estados UnidosRESUMO
BACKGROUND: Inhaled particles have been shown to produce systemic changes in DNA methylation. Global hypomethylation has been associated to viral sequence reactivation, possibly linked to the activation of pro-inflammatory pathways occurring after exposure. This observation provides a rationale to investigate viral sequence (both exogenous and endogenous) methylation in association to metal-rich particulate matter exposure. To verify this hypothesis, we chose the Wp promoter of the Epstein-Barr Virus (EBV-Wp) and the promoter of the human-endogenous-retrovirus w (HERV-w), respectively as a paradigm of an exogenous and an endogenous retroviral sequence, to be investigated by bisulfite PCR Pyrosequencing. We enrolled 63 male workers in an electric furnace steel plant, exposed to high level of metal-rich particulate matter. RESULTS: Comparing samples obtained in the first day of a work week (time 0-baseline, after 2 days off work) and the samples obtained after 3 days of work (time 1-post exposure), the mean methylation of EBV-Wp was significantly higher at baseline compared to post-exposure (meanbaseline = 56.7%5mC; meanpost-exposure = 47.9%5mC; p-value = 0.009), whereas the mean methylation of HERV-w did not significantly differ. Individual exposure to inhalable particles and metals was estimated based on measures in all working areas and time spent by the study subjects in each area. In a regression model adjusted for age, body mass index and smoking, PM and metal components had a positive association with EBV-Wp methylation (i.e. PM10: ß = 5.99, p-value < 0.038; nickel: ß = 17.82, p-value = 0.02; arsenic: ß = 13.59, p-value < 0.015). CONCLUSIONS: The difference observed comparing baseline and post-exposure samples may be suggestive of a rapid change in EBV methylation induced by air particles, while correlation between EBV methylation and PM/metal exposure may represent a more stable adaptive mechanism. Future studies investigating a larger panel of viral sequences could better elucidate possible mechanisms and their role in pro-inflammatory pathways leading to systemic health effects.
Assuntos
Poluentes Atmosféricos/toxicidade , Metilação de DNA/efeitos dos fármacos , Metalurgia , Metais/toxicidade , Exposição Ocupacional , Material Particulado/toxicidade , Adulto , DNA Viral/metabolismo , Retrovirus Endógenos/efeitos dos fármacos , Retrovirus Endógenos/metabolismo , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/metabolismo , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , AçoRESUMO
BACKGROUND: Overweight and obesity are becoming more widespread with alarming projections for the coming years. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases and altering the biomarkers of vascular inflammation. The associated biological mechanisms have not been fully understood yet; the common denominator in the pathogenesis of the co-morbidities of obesity is the presence of an active, low-grade inflammatory process. DNA methylation has been shown to regulate inflammatory pathways that are responsible for the development of cardiovascular diseases. OBJECTIVES: The aim of the study was to investigate, in a population of overweight/obese subjects, the effects of PM on blood DNA methylation in genes associated to inflammatory response. METHODS: Using bisulfite pyrosequencing, we measured DNA methylation in peripheral blood mononuclear cells from 186 overweighted/obese subjects. In particular, we quantified DNA methylation in a set of 3 candidate genes, including CD14, TLR4 and TNF-α, because of the important roles that these genes play in the inflammatory pathway. Personal exposure to PM10 was estimated for each subject based on the local PM10 concentrations, measured by monitoring stations at residential address. Repeated measure models were used to evaluate the association of PM10 with each genes, accounting for possible correlations among the genes that regulate the same inflammatory pathway. RESULTS: We found an inverse association between the daily PM10 exposure and the DNA methylation of inflammatory genes, measured in peripheral blood of healthy overweight/obese subjects. Considering different exposure time-windows, the effect on CD14 and TLR4 methylation was observed, respectively, in days 4-5-6, and days 6-7-8. TNF-α methylation was not associated to PM10. CONCLUSIONS: Our findings support a picture in which PM10 exposure and transcriptional regulation of inflammatory gene pathway in obese subjects are associated.
Assuntos
Metilação de DNA , Poluentes Ambientais/toxicidade , Inflamação/epidemiologia , Obesidade/epidemiologia , Sobrepeso/epidemiologia , Material Particulado/toxicidade , Adulto , Idoso , Análise Química do Sangue , Poluentes Ambientais/análise , Feminino , Humanos , Inflamação/induzido quimicamente , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade/induzido quimicamente , Sobrepeso/induzido quimicamente , Tamanho da Partícula , Material Particulado/análiseRESUMO
BACKGROUND: Exposure to particulate matter (PM) is associated with increased incidence of cardiovascular disease and increased coagulation, but the molecular mechanisms underlying these associations remain unknown. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues, might play an important role in PM-induced cardiovascular risk. We sought to determine whether the levels of PM with an aerodynamic diameter ≤ 10 µm (PM10) are associated with changes in fibrinogen levels, EV release, and the miRNA content of EVs (EV-miRNAs), investigating 1630 overweight/obese subjects from the SPHERE Study. RESULTS: Short-term exposure to PM10 (Day before blood drawing) was associated with an increased release of EVs quantified by nanoparticle tracking analysis, especially EVs derived from monocyte/macrophage components (CD14+) and platelets (CD61+) which were characterized by flow cytometry. We first profiled miRNAs of 883 subjects by the QuantStudio™ 12 K Flex Real Time PCR System and the top 40 EV-miRNAs were validated through custom miRNA plates. Nine EV-miRNAs (let-7c-5p; miR-106a-5p; miR-143-3p; miR-185-5p; miR-218-5p; miR-331-3p; miR-642-5p; miR-652-3p; miR-99b-5p) were downregulated in response to PM10 exposure and exhibited putative roles in cardiovascular disease, as highlighted by integrated network analysis. PM10 exposure was significantly associated with elevated fibrinogen levels, and five of the nine downregulated EV-miRNAs were mediators between PM10 exposure and fibrinogen levels. CONCLUSIONS: Research on EVs opens a new path to the investigation of the adverse health effects of air pollution exposure. EVs have the potential to act both as markers of PM susceptibility and as potential molecular mechanism in the chain of events connecting PM exposure to increased coagulation, which is frequently linked to exposure and CVD development.
Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Doenças Cardiovasculares/sangue , Vesículas Extracelulares/efeitos dos fármacos , MicroRNAs/sangue , Obesidade/sangue , Material Particulado/toxicidade , Índice de Massa Corporal , Doenças Cardiovasculares/induzido quimicamente , Estudos Transversais , Vesículas Extracelulares/metabolismo , Feminino , Citometria de Fluxo , Humanos , Exposição por Inalação/análise , Modelos Lineares , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/complicações , Tamanho da PartículaRESUMO
Epigenetics modifications, that include variations in DNA methylation, histone acetylation and micro RNA (miRNA) expression, co-operate together, influencing genome expression and function, in response to exogenous stimuli or exposures. Thus, epigenetic tools applied to epidemiology are useful in investigating, at the population level, the relationships between exposures to environmental, lifestyle, genetic, socioeconomic risk factors, and the epigenome, and/or specific health outcomes. But the choice of an appropriate study design and of valid epidemiological methods has a key role in determining the achievement of the study. This review summarises available evidence about the role of the most investigated epigenetic mechanisms in mediating lifestyle or environmental exposure effects on human health, considering the entire life-course, from in-utero to adulthood. Moreover, we illustrate the most important variables that should be properly considered when designing an epigenetic epidemiology study: the choice of an appropriate study design, a proper estimation of the required sample size, a correct biological sample selection, a validation strategy for epigenetics data, and an integrated exposure assessment methodology.
Assuntos
Poluentes Ambientais , Epidemiologia , Epigênese Genética , Estilo de Vida , Estudos Epidemiológicos , HumanosRESUMO
AIMS: Exposure to particulate air pollution is associated with increased blood pressure (BP), a well-established risk factor for cardiovascular disease. To elucidate the mechanisms underlying this relationship, we investigated whether the effects of particulate matter of less than 10µm in aerodynamic diameter (PM10) on BP are mediated by microRNAs. METHODS AND RESULTS: We recruited 90 obese individuals and we assessed their PM10 exposure 24 and 48h before the recruitment day. We performed multivariate linear regression models to investigate the effects of PM10 on BP. Using the TaqMan® Low-Density Array, we experimentally evaluated and technically validated the expression levels of 377 human miRNAs in peripheral blood. We developed a mediated moderation analysis to estimate the proportion of PM10 effects on BP that was mediated by miRNA expression. PM10 exposure 24 and 48h before the recruitment day was associated with increased systolic BP (ß=1.22mmHg, P=0.019; ß=1.24mmHg, P=0.019, respectively) and diastolic BP (ß=0.67mmHg, P=0.044; ß=0.91mmHg, P=0.007, respectively). We identified nine miRNAs associated with PM10 levels 48h after exposure. A conditional indirect effect (CIE=-0.1431) of PM10 on diastolic BP, which was mediated by microRNA-101, was found in individuals with lower values of mean body mass index. CONCLUSIONS: Our data provide evidence that miRNAs are a molecular mechanism underlying the BP-related effects of air pollution exposure, and indicate miR-101 as epigenetic mechanism to be further investigated.
Assuntos
Poluentes Atmosféricos/toxicidade , Pressão Sanguínea/efeitos dos fármacos , Exposição Ambiental , MicroRNAs/genética , Tamanho da Partícula , Material Particulado/toxicidade , Adulto , Feminino , Humanos , Itália , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Obesidade/etiologia , Sobrepeso/etiologiaRESUMO
BACKGROUND: Despite epidemiological findings showing increased air pollution related cardiovascular diseases (CVD), the knowledge of the involved molecular mechanisms remains moderate or weak. Particulate matter (PM) produces a local strong inflammatory reaction in the pulmonary environment but there is no final evidence that PM physically enters and deposits in blood vessels. Extracellular vesicles (EVs) and their miRNA cargo might be the ideal candidate to mediate the effects of PM, since they could be potentially produced by the respiratory system, reach the systemic circulation and lead to the development of cardiovascular effects.The SPHERE ("Susceptibility to Particle Health Effects, miRNAs and Exosomes") project was granted by ERC-2011-StG 282413, to examine possible molecular mechanisms underlying the effects of PM exposure in relation to health outcomes. METHODS/DESIGN: The study population will include 2000 overweight (25 < BMI < 30 kg/cm2) or obese (BMI ≥ 30 kg/cm2) subjects presenting at the Center for Obesity and Work (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy).Each subject donates blood, urine and hair samples. Extensive epidemiological and clinical data are collected. Exposure to PM is assigned to each subject using both daily PM10 concentration series from air quality monitors and pollutant levels estimated by the FARM (Flexible air Quality Regional Model) modelling system and elaborated by the Regional Environmental Protection Agency.The recruitment period started in September 2010 and will continue until 2015. At December 31, 2013 we recruited 1250 subjects, of whom 87% lived in the province of Milan.Primary study outcomes include cardiometabolic and respiratory health effects. The main molecular mechanism we are investigating focuses on EV-associated microRNAs. DISCUSSION: SPHERE is the first large study aimed to explore EVs as a novel potential mechanism of how air pollution exposure acts in a highly susceptible population. The rigorous study design, the availability of banked biological samples and the potential to integrate epidemiological, clinical and molecular data will also furnish a powerful base for investigating different complementary molecular mechanisms. Our findings, if confirmed, could lead to the identification of potentially reversible alterations that might be considered as possible targets for new diagnostic and therapeutic interventions.
Assuntos
Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/etiologia , Suscetibilidade a Doenças , Obesidade , Doenças Respiratórias/etiologia , Poluentes Atmosféricos/análise , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/urina , Monitoramento Ambiental , Exossomos/química , Feminino , Humanos , Itália , Masculino , MicroRNAs/análise , Pessoa de Meia-Idade , Modelos Teóricos , Doenças Respiratórias/sangue , Doenças Respiratórias/urinaRESUMO
Air particulate matter (PM) is widely recognized for its potential to negatively affect human health, including changes in the upper respiratory microbiome. However, research on PM-associated microbiota remains limited and mostly focused on PM (e.g., PM2.5 and PM10). This study aims to characterize for the first time the microbiome of Total Suspended Particles (TSP) and investigate the correlations of indoor TSP with the human upper respiratory microbiome. Biological and environmental samples were collected over three collection periods lasting three weeks each, between May and July 2022 at the University of Milan and the University of Insubria Como. TSP were sampled using a filter-based technique, while respiratory samples from both anterior nares (AN) and the nasopharynx (NP) were collected using swabs. Microbiome analysis of both human (N = 145) and TSP (N = 51) samples was conducted on metagenomic sequencing data. A comparison of indoor and outdoor TSP microbiomes revealed differences in microbial diversity and taxonomic composition. The indoor samples had higher relative abundance of environmental bacteria often associated with opportunistic infections like Paracoccus sp., as well as respiratory bacteria such as Staphylococcus aureus and Klebsiella pneumoniae. Additionally, both indoor and outdoor TSP samples contained broad spectrum antibiotic resistance genes. Indoor TSP exposure was negatively associated with commensal bacteria and positively associated with Staphylococcus aureus relative abundance. Finally, a correlation between the relative abundance of respiratory bacteria identified in the indoor TSP and the upper respiratory microbiome was found, suggesting a potential interaction between TSP and the upper airways.
RESUMO
OBJECTIVE: The objective of this study was to determine the response rate to chemotherapy, as well as the progression-free survival (PFS), the overall survival (OS), and the main prognostic factors in patients treated at the European Institute of Oncology in Milan, Italy. METHODS: Retrospective data were collected on patients with uterine cervical carcinoma, International Federation of Gynecology and Obstetrics (FIGO) stage IB2 to IIB, who underwent platinum-based neoadjuvant chemotherapy (NACT) followed by radical hysterectomy. RESULTS: A total of 121 patients were studied. The median (range) age was 45 years old (23-69 years). The distribution of patients by International Federation of Gynecology and Obstetrics stage was as follows: n = 88 (73%) with stage IB2, n = 7 (6%) with stage IIA, and n = 26 (21%) with stage IIB. The median (range) tumor size was 50 mm (20-90 mm). Neoadjuvant chemotherapy involved a combination of cisplatin, paclitaxel, and ifosfamide in 80 patients (65%). Using this treatment, 112 patients (93%) received 3 cycles of NACT, whereas 6 (5%) received 4 cycles. Complete and partial pathology response was observed in 9 patients (7%) and 79 patients (66%), respectively. Adjuvant radiotherapy was not necessary in 65% of patients. A 5-year PFS and OS of 58% and 71%, respectively, were observed. Independent prognostic factors for PFS and OS were identified, including response to NACT, persistent lymph node metastases, and parametrial involvement. CONCLUSIONS: Neoadjuvant chemotherapy in this group of tumors is a promising treatment strategy and should be discussed with patients. Although these results are comparable to those obtained by standard chemoradiation treatment, one strategy should not be recommended over the other until the results of the ongoing phase 3 trial for NACT are released.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/cirurgia , Cisplatino/administração & dosagem , Histerectomia/métodos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/cirurgia , Adulto , Idoso , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Terapia Combinada , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estadiamento de Neoplasias , Estudos Retrospectivos , Análise de Sobrevida , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/patologia , Adulto JovemRESUMO
Intercellular communication has been transformed by the discovery of extracellular vesicles (EVs) and their cargo, including microRNAs (miRNAs), which play crucial roles in intercellular signaling. These EVs were previously disregarded as cellular debris but are now recognized as vital mediators of biological information transfer between cells. Furthermore, they respond not only to internal stimuli but also to environmental and lifestyle factors. Identifying EV-borne oncomiRs, a subset of miRNAs implicated in cancer development, could revolutionize our understanding of how environmental and lifestyle exposures contribute to oncogenesis. To investigate this, we studied the plasma levels of EV-borne oncomiRs in a population of 673 women and 238 men with a body mass index > 25 kg/m2 (SPHERE population). The top fifty oncomiRs associated with the three most common cancers in women (breast, colorectal, and lung carcinomas) and men (lung, prostate, and colorectal carcinomas) were selected from the OncomiR database. Only oncomiRs expressed in more than 20% of the population were considered for statistical analysis. Using a Multivariate Adaptive Regression Splines (MARS) model, we explored the interactions between environmental/lifestyle exposures and EV oncomiRs to develop optimized predictor combinations for each EV oncomiR. This innovative approach allowed us to better understand miRNA regulation in response to multiple environmental and lifestyle influences. By uncovering non-linear relationships among variables, we gained valuable insights into the complexity of miRNA regulatory networks. Ultimately, this research paves the way for comprehensive exposome studies in the future.
RESUMO
During pregnancy, the woman's immune system changes to support fetal development. These immunological modifications can increase the risk of respiratory diseases. Because the respiratory microbiome is involved in airway homeostasis, it is important to investigate how it changes during pregnancy. Additionally, since parity is associated with immune system alterations and cohabitants shared a similar microbiome, we investigated whether having a child may influence the respiratory microbiome of pregnant women. We compared the microbiome of 55 pregnant with 26 non-pregnant women using 16S rRNA gene sequencing and analyzed taxonomy, diversity, and metabolic pathways to evaluate the differences among nulliparous, primiparous, and multiparous women. The microbiome was similar in pregnant and non-pregnant women, but pregnant women had higher alpha diversity (Chao1 p-value = 0.001; Fisher p-value = 0.005) and a lower abundance of several metabolic pathways. Multiparous pregnant women had a higher relative abundance of Moraxella (p-value = 0.003) and a lower abundance of Corynebacterium (p-value = 0.002) compared with primiparous women. Both multiparous (pregnant) and primiparous/multiparous (non-pregnant) women reported a higher abundance of Moraxella compared with primiparous (pregnant) or nulliparous ones (p-value = 0.001). In conclusion, we characterized for the first time the upper airway microbiome of pregnant women and observed the influence of parity on its composition.
RESUMO
Bulky DNA adducts are a combined sign of aromatic chemical exposure, as well as an individual's ability to metabolically activate carcinogens and repair DNA damage. The present study aims to investigate the association between PM exposure and DNA adducts in blood cells, in a population of 196 adults with an unhealthy BMI (≥25). For each subject, a DNA sample was obtained for quantification of DNA adducts by sensitive32P post-labelling methods. Individual PM10 exposure was derived from daily mean concentrations measured by single monitors in the study area and then assigned to each subject by calculating the mean of the 30 days (short-term exposure), and of the 365 (long-term exposure) preceding enrolment. Multivariable linear regression models were used to study the association between PM10 and DNA adducts. The majority of analysed samples had bulky DNA adducts, with an average value of 3.7 ± 1.6 (mean ± SD). Overall, the findings of the linear univariate and multiple linear regression showed an inverse association between long-term PM10 exposure and adduct levels; this unexpected result might be since the population consists of subjects with an unhealthy BMI, which might show an atypical reaction to airborne urban pollutants; a hermetic response which happens when small amounts of pollutants are present. Pollutants can linger for a long time in the adipose tissue of obese persons, contributing to an increase in oxidative DNA damage, inflammation, and thrombosis when exposure is sustained.
Assuntos
Adutos de DNA , Poluentes Ambientais , Adulto , Células Sanguíneas , Índice de Massa Corporal , Poeira/análise , Poluentes Ambientais/análise , Humanos , População UrbanaRESUMO
The impact of exposure to respirable particulate matter (PM) during pregnancy is a growing concern, as several studies have associated increased risks of adverse pregnancy and birth outcomes, and impaired intrauterine growth with air pollution. The molecular mechanisms responsible for such effects are still under debate. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues (e.g., pulmonary environment and placenta), might play an important role in PM-induced risk. We sought to determine whether the levels of PM with aerodynamic diameters of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) are associated with changes in plasmatic EV release and EV-miRNA content by investigating 518 women enrolled in the INSIDE study during the first trimester of pregnancy. In all models, we included both the 90-day averages of PM (long-term effects) and the differences between the daily estimate of PM and the 90-day average (short-term effects). Short-term PM10 and PM2.5 were associated with increased concentrations of all seven EV types that we assayed (positive for human antigen leukocyte G (HLA-G), Syncytin-1 (Sync-1), CD14, CD105, CD62e, CD61, or CD25 determinants), while long-term PM10 showed a trend towards decreased EV concentrations. Increased Sync-1 + EV levels were associated with the plasmatic decrease of sVCAM-1, but not of sICAM-1, which are circulating biomarkers of endothelial dysfunction. Thirteen EV-miRNAs were downregulated in response to long-term PM10 and PM2.5 variations, while seven were upregulated (p-value < 0.05, false discovery rate p-value (qFDR) < 0.1). Only one EV-miRNA (hsa-miR-221-3p) was downregulated after short-term variations. The identified PM-modulated EV-miRNAs exhibited putative roles in inflammation, gestational hypertension, and pre-eclampsia, as highlighted by miRNA target analysis. Our findings strongly support the hypothesis that EVs have an important role in modulating PM exposure effects during pregnancy, possibly through their miRNA cargo.